Земенков Ю.Д. (ред.) Эксплуатация магистральных газопроводов - файл n1.doc

Земенков Ю.Д. (ред.) Эксплуатация магистральных газопроводов
скачать (7976.6 kb.)
Доступные файлы (12):
n1.doc7951kb.30.12.2007 11:43скачать
n2.doc728kb.01.03.2004 14:56скачать
n3.doc2218kb.01.03.2004 14:56скачать
n4.doc1149kb.01.03.2004 14:56скачать
n5.doc772kb.01.03.2004 14:56скачать
n6.doc2063kb.31.12.2010 00:34скачать
n7.doc1068kb.01.03.2004 14:56скачать
n8.doc368kb.01.03.2004 14:56скачать
n9.docскачать
n10.doc1483kb.31.12.2010 00:39скачать
n11.doc106kb.01.03.2004 14:56скачать
n12.doc50kb.01.03.2004 14:56скачать

n1.doc

1   2   3   4


Рис. 3.3. Технологическая схема абсорбционной осушки газа



Технологическая схема установки осушки газа с помощью ДЭГа представлена на рис. 3.3. Она состоит из контактора-абсорбера 1, десорбера (выпарной колонны) 5 и вспомогательного оборудования (теплообменники, насосы, фильтры, емкости и др.). Влажный газ поступает в нижнюю скрубберную секцию абсорбера 1, где отделяется от капельной жидкости и УВ, после чего поступает под нижнюю тарелку абсорбера.

Таблица 3.2

Технологические показатели работы установки осушки газа


Фактическая пропускная способность по газу, тыс. м3/сут

50007500

2250

2786

Давление (абсолютное), МПа:










в абсорбере

3,44,5

3,2

3,1

в десорбере

0,026

0,129

0,112

Температура, 0С:










в абсорбере

2525

1626

26

в десорбере: на выходе

вверху

100130

6267

120

96

84

138

в кипятильнике

145150

157

161

Скорость газа в абсорбере, м/с

0,20

0,18

0,142

Количество раствора ДЭГ, поступающего в абсорбер, дм3/тыс. м3 газа

3040

19,2

60

Массовое содержание раствора ДЭГ в абсорбере, %:

на входе



98,299,2



98,2



96,0

на выходе

96,097,5

94,9

93,7

Свойства осушенного газа:










плотность при 200С, кг/м3

0,600

0,832

0,976

точка росы, 0С

-100  -15

-1  -3

-1

потери раствора ДЭГ, г/100 м3 газа

1318

44,5

11,7


Затем газ, двигаясь снизу вверх навстречу абсорбенту, осушается и проходит в верхнюю скрубберную секцию, где отделяется от уносимых с потоком капель абсорбента. Осушенный газ подается в газопровод.

Насыщенный раствор абсорбента из абсорбера 1 сначала проходит теплообменник 2, выветриватель 3, фильтр 4. Затем раствор поступает в десорбер 5. В нижней части десорбера 5 происходит нагрев абсорбента паровым нагревателем до установленной температуры. Водяной пар из десорбера поступает в сборник конденсата 6. Отсюда часть воды направляется обратно в верхнюю часть колонны для понижения температуры и концентрации поднимающихся паров абсорбента, что сокращает его расход.

Регенерированный абсорбент охлаждается насыщенным раствором в теплообменнике 2, после чего поступает в абсорбер 1.

Технологические показатели работы трех установок по осушке газа растворами ДЭГ приведены выше.
3.3.3. Адсорбционная осушка газов

Адсорбционные процессы применяются на месторождениях природных газов, когда требуется глубокое охлаждение газа для извлечения влаги и тяжелых УВ. Здесь возможно получение точки росы (-20, -300С и ниже), которая необходима при транспорте газа в северных районах страны.

Одним из важных преимуществ адсорбции является то, что не требуется предварительной осушки газа, т.к. твердые (гидрофильные) адсорбенты, наряду с УВ, хорошо адсорбируют и влагу. В качестве адсорбента используют твердые пористые вещества, обладающие большой удельной поверхностью.

К ним относятся активированные угли (Sуд = 6001700 м2/г); силикагели – продукты обезвоживания геля кремниевой кислотой (Sуд = 320770 м2/г); цеолиты – минералы, являющиеся водными алюмосиликатами натрия и кальция, а также искусственные цеолиты - пермутиты.

Сущность адсорбции состоит в концентрировании вещества на поверхности или в объеме микропор твердого тела. Эффективные радиусы микропор составляют 510 мкм. Таким образом, в этих капиллярных порах, размеры которых соизмеримы с размерами молекул адсорбируемого вещества, под влиянием сил межмолекулярного взаимодействия происходит концентрация вещества.

Промышленные адсорбенты, применяемые для обработки природных газов, должны обладать достаточно высокой активностью; обратимостью адсорбции и простотой регенерации; малым сопротивлением потоку газа; высокой механической прочностью, предотвращающей дробление и расширение поглотителя; химической инертностью; небольшими объемными изменениями в зависимости от температуры и степени насыщения.

Десорбция основана на том, что при повышении температуры увеличивается энергия адсорбированных молекул, и они могут освобождаться от адсорбента. Наиболее благоприятны для этого температуры 2003000С.

Адсорбционная установка имеет два или более адсорберов. Адсорбция и десорбция осуществляются непосредственно в одном и том же аппарате. В момент насыщения адсорбента влагой в одном из адсорберов в другом происходят десорбция и охлаждение. Процесс протекает последовательно по мере насыщения влагой адсорбента в колонне.

Продолжительность цикла насыщения, регенерации и охлаждения адсорбента определяется временем, необходимым для его регенерации. Обычно цикл насыщения длится 1020 часов, а цикл регенерации 48 часов. Цикл охлаждения применяется только в тех случаях, если адсорбент не успевает охлаждаться самим газом, поступающим на осушку.


3.3.4. Очистка природного газа от сероводорода

и углекислого газа
Природные нефтяные газы многих месторождений содержат в своем составе сероводород (Н2S) и двуокись углерода (СО2). Объемное содержание этих компонентов, называемых иногда кислыми, колеблется в широких пределах, доходя до 50% и более. Значительное содержание Н2S и СО2 обнаружено в газах глубоко залегающих месторождений Прикаспийской впадины, и, в особенности, Оренбургском, Карачаганакском, Астраханском. Содержание кислых компонентов в газе Астраханского месторождения достигает 40%, из которых концентрация сероводорода составляет 22%. Сероводород – ядовитый газ с запахом тухлых яиц. Концентрация сероводорода в воздухе 0,050,1% (0,761,52 г/м3) вызывает потерю сознания и даже приводит к смерти. При меньшем содержании сероводорода возможно хроническое отравление. Сероводород в присутствии влаги – сильно корродирующее вещество, разрушающее металл труб, оборудование, арматуру.

Вместе с тем при значительном содержании сероводород – ценное сырье для получения высококачественной элементарной серы и серной кислоты, а также других продуктов.

Корродирующими свойствами в присутствии влаги обладает также углекислый газ. Кроме того, транспортирование по газопроводам углеводородных газов, содержащих углекислый газ (балластный газ), приводит к снижению пропускной способности трубопроводов и возрастанию стоимости транспорта. Поэтому добываемые природные газы подвергают очистке от сероводорода и углекислоты. Это необходимо, с одной стороны, для предотвращения вредного влияния этих компонентов на оборудование и технологические процессы, с другой – для извлечения из кислых компонентов полезных конечных продуктов.

Природные газы очищают от сероводорода и углекислоты сорбционными методами с использованием жидких и твердых поглотителей (сорбентов). При этом абсорбционный метод называют мокрым, а адсорбционный – сухим методом очистки газа от кислых компонентов.

При адсорбционных методах в качестве твердого поглотителя используют окись цинка, гидрат окиси железа, активированный уголь, цеолиты. Этот метод применяется для очистки небольших количеств газа. Абсорбционные методы более экономичны, позволяют полностью автоматизировать процесс и обрабатывать большое количество газа со значительным содержанием кислых компонентов. Абсорбционные методы подразделяют на несколько видов:

На практике при очистке больших объемов газа с любым содержанием сероводорода и углекислого газа наиболее распространен абсорбционный метод с применением водных растворов моноэтаноламина или диэтаноламина. Эти сорбенты имеют щелочные свойства, широко поглощают сероводород и углекислый газ, образуя сульфиды и бисульфиды, карбонаты и бикарбонаты.

Технологические схемы очистки газа зависят от его состава, требуемой степени очистки и дальнейшего направления использования газа. В технологическую схему очистки газа от сероводорода и углекислого газа входит оборудование по предварительной очистке газа от твердых и жидких частиц, контакторы-абсорберы, аппараты для регенерации насыщенного раствора, а при дальнейшем получении элементарной серы – аппаратура по переработке сероводорода в серу и др.
3.3.5. Предупреждение гидратообразования
Для предупреждения гидратообразования необходимо устранить хотя бы одно из основных условий существования гидратов: высокое давление, низкую температуру или свободную влагу в газе.

В соответствии с этим предупреждение гидратообразования осуществляют вводом ингибиторов в поток газа, осушкой газа от паров воды, поддержанием температуры газа выше температуры гидратообразования, поддержанием давления ниже давления гидратообразования.

Метод снижения давления широко применяется для ликвидации образовавшихся гидратов в стволе скважин, в промысловых и магистральных газопроводах, где температура в результате разложения гидратов не понижается ниже 00С. Для этого участок газопровода, в котором образовались гидраты, отключается, и газ через продувочные свечи выпускается в атмосферу, а продукты распада выдуваются через одну из свечей. После этого участок снова включается в работу. Эту процедуру можно осуществлять также и односторонним выпуском газа из газопровода.

Метод подогрева применяют на газопроводах небольшой протяженности для разложения уже образовавшихся гидратов либо для предупреждения гидратообразования в местах редуцирования газа. Газ нагревают на станциях подогрева открытым огнем, паром, водой или другими теплоносителями.

Однако, наиболее эффективный для предупреждения гидратообразования – метод ввода ингибиторов в поток газа.

На практике в качестве ингибиторов широко используют электролиты, спирты, гликоли. Растворяясь в воде, имеющейся в потоке газа, ингибиторы снижают давление паров воды. При этом, если гидраты и образуются, то при более низкой температуре. Ввод ингибиторов при уже образовавшихся гидратах снижает давление паров воды, равновесие гидраты - вода нарушается, упругость паров воды над гидратами оказывается большей, чем над водным раствором, что и приводит к их разложению. В качестве антигидратных ингибиторов широкое применение находит хлористый кальций и диэтиленгликоль (ДЭГ) и др.

При температурах ниже -400С в качестве ингибиторов для предупреждения гидратообразования рекомендуется применять метанол.

Иногда возможно также применение комбинированных ингибиторов, состоящих из нескольких веществ. К ним можно отнести смесь гликоля с метанолом и бутилоктаном (БЛО).

Для борьбы с гидратообразованием используют этилкарбитол, являющийся побочным продуктом производства эфиров гликолей. Этилкарбитол в основном состоит из моноэтилового эфира диэтиленгликоля и этиленгликоля (около 95%), в состав растворов входят также ДЭГ (1%), этилцеллозоля, пропиленгликоль и вода. Этилкарбитол – прозрачная, бесцветная жидкость с температурой замерзания -600С и кипения 2020С. Плотность при 200С составляет 0,99 кг/л.

При проектировании систем добычи, сбора и обработки газов необходимо принять во внимание следующее:

На практике для борьбы с гидратообразованием в стволах скважин и шлейфах газопроводов используют водные растворы метанола. Растворы гликолей применяют для обеспечения безгидратной работы установок НТС.
3.3.6. Очистка газов от механических примесей
Нормальная работа технологического оборудования и качество выпускаемой продукции во многом зависят от содержания в газе не только влаги и кислых компонентов, но и механических примесей. Наличие механических примесей в газе способствует истиранию металла, вызывает его износ, приводит к выводу из строя уплотнительных колец, клапанов и гильз цилиндров поршневых компрессоров, снижает их КПД. Механические примеси отлагаются также на поверхности труб холодильников и резко снижают их коэффициент теплопередачи.

Источники механических примесей в газе – это остатки строительного мусора, продукты коррозии внутренних поверхностей труб, арматуры и аппаратов, грунт, попавший в газопроводы при проведении ремонтных работ, частицы керна и т.д.

Наиболее крупные частицы примеси содержатся в газопроводах в начальных периодах эксплуатации, когда газовым потоком из труб выносятся остатки строительного мусора. Через 12 года эксплуатации размер твердых частиц уменьшается.

Для обеспечения нормальной работы оборудования газ необходимо очистить от механических примесей. Этот процесс осуществляется с применением специальных пылеуловителей и в комбинации при разделении газожидкостных потоков в обычных сепараторах.

Пылеуловители используют на ДКС. Выбор типа пылеуловителей зависит от размера частиц и требуемой степени очистки. Частицы размером от 100 до 500 мкм улавливаются в осадительных расширительных камерах, дрипах и циклонах. Объемные сепараторы практически отделяют только крупнодисперсную пыль размером частиц 50100 мкм.

Для улавливания частиц от 1 до 100 мкм используются циклоны, мокрые пылеуловители, керамические и металлокерамические фильтры.

Для повышения эффективности выделения примесей широкое применение нашли также фильтры-сепараторы. Эти аппараты представляют собой обычные сепараторы с насадочными элементами, которые способствуют укрупнению капель при прохождении через них продукции.

Частицы размером менее 1 мкм находятся броуновском движении и не осаждаются под действием сил тяжести. Такая взвесь может быть уловлена в электрофильтрах и мокрых пылеуловителях. В последних в качестве орошения должна использоваться жидкость с хорошей смачивающейся способностью.

На ДКС магистральных газопроводов, построенных в первые годы развития газовой промышленности для очистки газа от твердых и жидких примесей применяли масляные пылеуловители, которые характеризуются высокой эффективностью очистки газа от твердых примесей.

Принцип работы масляных пылеуловителей основан на поглощении механических примесей и капельной углеводородной жидкости при прохождении газа через слой масла. Через период, определяемый, в основном, количеством механических примесей в газе, происходит насыщение масла. После чего требуется замена поглотительной жидкости.

Жидкости (масла), применяемые в пылеуловителях, должны иметь малую упругость насыщенных паров, низкую температуру застывания и обладать способностью смачивать пыль. К примеру, можно использовать масло, имеющее температуру начала кипения не ниже 2600С, плотность от 0,9 до 0,85 г/см3, вязкость 100 мм2/с при 380С.

Недостатком масляных пылеуловителей считается значительный расход масла и потребность в постоянном уходе за ним.

В настоящее время широкое применение находят мультипликационные уловители, в которых благодаря закручиванию потока газа в завихрителе происходит очистка газа от механических примесей в капельных жидкостях. Отсепарированные примеси собираются в нижней части аппарата, откуда удаляются через дренажный штуцер. Очищенный газ через патрубок выводится из пылеуловителя.

Недостаток пылеуловителей этого типа – снижение эффективности со времени их эксплуатации в связи с забиванием циклонных элементов механическими примесями, разрушением креплений этих элементов, частичным разрушением внутренних элементов аппарата и т.д.

При наличии влаги в жидкой фазе газа в зимний период года нижняя часть пылеуловителей замерзает. Для предотвращения этого предусмотрена подача водяного пара в аппарат через специальный змеевик.
3.4. Подготовка и транспортирование углеводородного сырья
Высокие темпы развития газовой промышленности предопределяют значительный рост объемов добычи газового конденсата. В связи с этим важное значение приобретает проблема транспортирования конденсата на большие расстояния. В зависимости от размещения комплексов ста­билизации конденсата решается вопрос о транспортировании либо ста­бильного конденсата, метана и этана, либо нестабильного конденсата.

Нестабильный конденсат – смесь углеводородов, находящихся при стандартных условиях в виде жидкости, в которой растворены в разных количествах газообразные компоненты (метан, этан, пропан, бутан и др.). Такой конденсат характеризуется повышенными значениями дав­ления насыщения и при стандартных условиях переходит в двухфазное состояние.

После специальной подготовки (стабилизации) получают стабильный конденсат. Стабилизация газового конденсата – процесс извлечения из нестабильного конденсата в основном легких углеводородов (С1 - С4), которые при нормальных условиях (Р = 0,1 МПа и Т = 273 К) нахо­дятся в газообразном состоянии.

Стабильность или нестабильность конденсата, содержащего наряду с С5+ более легкие компоненты, определяют по давлению насыщенных паров и количеству конденсата (от 25 до 85%), выкипающего при тем­пературе 323 К и атмосферном давлении. Давление насыщенных паров должно обеспечивать возможность транспортирования и хранения ста­бильного конденсата в жидком состоянии при температуре до 310,8 К и атмосферном давлении.

Стабилизация углеводородного конденсата осуществляется на уста­новках стабилизации конденсата (УСК). УСК территориально могут на­ходиться на промысле, в составе установок низкотемпературной сепа­рации (НТС) и низкотемпературной конденсации (НТК), а также непо­средственно на газоперерабатывающем заводе (ГПЗ).

Обычно рассматриваются четыре уровня подготовки и магистраль­ного транспорта конденсата и продуктов его стабилизации: I – дегаза­ция нестабильного конденсата; II – деметанизация нестабильного кон­денсата; III – деэтанизация нестабильного конденсата; IV – полная стабилизация конденсата.

В зависимости от уровня подготовки к транспорту конденсат харак­теризуется определенными параметрами, в соответствии с ко­торыми выделяют четыре схемы транспортирования.

Первая схема предусматривает транспортирование нестабильного дегазированного конденсата без дополнительной обработки на голов­ных сооружениях. Дальнейшая перекачка конденсата осуществляется в однофазном состоянии с давлением насыщения рн = 2,5 МПа при t = -10 °С и = 583 кг/м3

Вторая схема рассчитана на транспортирование деметанизированного нестабильного конденсата. Поступающий на головные сооружения кон­денсат деметанизируется при давлении 2,5 МПа, что снижает давление насыщенных паров до 0,5 МПа, но значительно повышает температуру выходного продукта (до 140С); = 639 кг/м3. При этом варианте необходимо оборудовать головные сооружения конденсатопроаода установками деметанизации, дожимной компрессорной станцией для утилизации газов деметанизации конденсата, станцией охлаждения деметанизированного конденсата до температуры от -2 до -4 °С.

Третья схема предусматривает более глубокую стабилизацию кон­денсата – деэтанизацию. Давление насыщения транспортируемой жидко­сти снижается до 0,150,20 МПа при t = +10°С, температура на выходе из установки деэтанизации равна 165°С, = 685 кг/м3. Головные соору­жения конденсатопровода при этом должны оснащаться установками деэтанизации, станцией охлаждения деметанизированного конденсата до температуры от -2 до -4 °С.

Четвертая схема используется при транспортировании стабильного конденсата. Выходные продукты: стабильный конденсат с = 725 кг/м3, широкая фракция легких углеводородов с давлением насыщенных па­ров около 0,5 МПа, = 610 кг/м3 а также газы стабилизации при давле­нии 2,5 МПа. Для реализации этого варианта требуется сооружение уста­новок стабилизации (соответствующих мощности газоперерабатывающих установок).

При сооружении установок стабилизации конденсата за пределами установок НТК осложняется транспортирование конденсата: из-за обра­зования газовых пробок нарушается нормальный режим эксплуатации конденсатопроводов. Дегазация конденсата в конденсатопроводе, осо­бенно на конечных участках, приводит к резким колебаниям давления и количества сырья, поступающего на установку стабилизации конден­сата, что ухудшает ее работу. Сооружение установок деэтанизации кон­денсата в едином комплексе с установками НТК обеспечит не только нормальную работу конденсатопроводов и качественную утилизацию газов деэтанизации, но и лучшую рекуперацию тепла и холода техноло­гических потоков.

При перекачке двухфазной жидкости по трубопроводам, уложенным на пересеченной местности с восходящими и нисходящими участками, возникает ряд проблем, связанных с появлением газовых пробок и за­щемлением их на нисходящих участках непосредственно за перевальной точкой, что приводит к повышению гидравлического сопротивления. В связи с этим проблему транспортирования нестабильного конден­сата целесообразно решать путем перекачки газо-насыщенной жидкости в однофазном состоянии при давлении выше давления насыщенных паров, т.е. для обеспечения однофазного состояния рабочее давление на входе в последующую станцию принимается рав­ным давлению насыщенных паров и давлению, обеспечивающему кавитационный запас насоса, соответственно: для дегазированного конден­сата – 3,3, деэтанизированного – 0,70,9, ста­бильного – 0,6 МПа.


1   2   3   4


Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации