Строкова Л.А. Soil Mechanics. Практикум для занятий на английском языке по дисциплине Механика грунтов - файл n1.doc

Строкова Л.А. Soil Mechanics. Практикум для занятий на английском языке по дисциплине Механика грунтов
скачать (1064.5 kb.)
Доступные файлы (1):
n1.doc1065kb.03.11.2012 09:03скачать

n1.doc

  1   2   3   4   5


TOMSK POLYTECHNIC UNIVERSITY

ENGLISH LANGUAGE PRACTICE


Soil Mechanics

L.A. Strokova

Recommended for publishing as a study aid

by the Editorial Board of Tomsk Polytechnic University


Tomsk Polytechnic University Publishing House

2010

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Л.А. Строкова


Профессиональный английский язык

Практикум для занятий на английском языке

по дисциплине «Механика грунтов»

Издательство

Томского политехнического университета

2010
УДК 624.131

ББК 26.3
Строкова Л.А.

Практикум для занятий на английском языке по дисциплине «Механика грунтов». – Томск: Изд-во Томского политехнического университета, 2010. – 48с.
Работа содержит методические материалы, направленные на отработку и закрепление как аспектов английского языка, так и профессиональной лексики, и предназначено для студентов 4 курса, обучающихся в Институте геологии и нефтегазового дела по направлению 130100 «Геология и разведка полезных ископаемых». Предлагаемые материалы способствуют знакомству с терминами, используемыми в инженерной практике в англоязычных странах.
УДК 624.131

ББК 26.3


Рецензент

Доцент кафедры иностранных языков в области геологии и

нефтегазового дела (ИЯГН) Болсуновская Людмила Михайловна

© ГГОУ ВПО «Национальный исследовательский Томский политехнический университет», 2010

© Строкова Л.А., 2010

© Оформление. Издательство Томского
политехнического университета, 2010

1. Some Basic Soil Properties

1.1. Origin


Most soils are produced by the breakdown (“weathering”) of rocks. The principal exceptions are those of biological origin – e.g. offshore soils often consist of the remains of the skeletons of tiny marine organisms, or of the shells of such organisms, and are hence composed largely of calcium carbonate (CaCO3), and are called calcareous soils or carbonate soils (these two terms are almost, but not completely, synonymous). In some offshore regions influenced by deposition from major river systems (e.g. in the Gulf of Mexico, around the mouth of the Mississippi, or off Brazil, around the mouth of the Amazon, the soils can consist of clays of terrestrial origin, washed out by the river).

1.2. Rock “weathering”


The process of rock breakdown to form soil is termed rock “weathering”. This is either:

1.3. Soil Classification


Soils are classified on the basis of:

1.4. Soil “density”


The density of the soil particles themselves is denoted s (the soil particle density), and for many soils, this is between 2.6 and 2.7 t/m3. The density of water w is 1 t/m3. The relative density of the soil particles is therefore Gs = s/w (being a ratio, this is just a dimensionless number).

As we are generally dealing with soil on the earth’s surface (and not on the moon, or in a centrifuge with elevated g-level), we are usually interested in the forces in soil, and hence we are more interested in weight than density, where weight is simply .g (and g, the acceleration due to the earth’s gravity, is 9.81 m/s2). Thus, instead of using density all the time, we use unit weight  (where  = .g, and has units of kN/m3). The unit weight of water, w, is therefore 9.81 kN/m3. The unit weight of quartz (the mineral that many sands are comprised of) is about 26 kN/m3 (that is, a solid 1 m3 block of silica would weigh 26 kN.)

If a 1 m3 container is filled with dry silica sand, the weight would be considerably less than the weight of a solid block of silica, due to the air-filled voids between the particles.

The basic means of expressing the density of packing is to use the voids ratio (e):

,

where Vv is the volume of the voids, and Vs is the volume of the “solids” (soil particles). Note that e can be greater than 1 (it very often is for clay soils).

So, for our 1 m3 box of dry sand, the total weight of the soil in this state is the dry unit weight (d):



If the voids are now completely filled with water, the box will of course be heavier. The weight would now correspond to the saturated unit weight (sat).



The “wetness” of a soil is described (in civil engineering) by on a weight basis:

(often expressed as %)

(i.e. as the weight of water divided by the weight of the dry soil. This is found by weighing the wet sample first, then drying it in the oven, then weighing the dry soil).

From these relationships, we can see that:


  1   2   3   4   5


Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации