Характеристика чугунов - файл n1.doc

Характеристика чугунов
скачать (340 kb.)
Доступные файлы (1):
n1.doc340kb.23.11.2012 23:55скачать

n1.doc

Общая характеристика чугунов


Чугунами принято условно называть железоуглеродистые сплавы с содержа­нием углерода свыше 2 % вне зависимости от степени легированности. Исключе­ние составляют некоторые инструментальные стали и высококремнистые чугуны, например силал, содержащий в зависимости от марок от 1.6 до 2.5 % С. Принятое разграничивание области чугунов от области стали совпадает с предельной растворимостью углерода в ?-железе.

Свойства чугуна определяются количеством, формой и характером распреде­ления структурных составляющих. Фазовый состав чугуна зависит от химического состава, условий выплавки и условий кристаллизации чугуна [1].

Диаграмма состояний железо-углерод


Диаграмма состояний железо-углерод в интервале концентраций от железа до цементита представлена на рис. 1. Линия ABCD является ликвидусом системы, линия AHJECF – солидусом.

Три горизонтальные линии на диаграмме (HJB, ECF и PSK) указывают на протекание трёх нонвариантных реакций. При 14850 (линия HJB) протекает перитектическая реакция LB+ФН?АJ. В результате перитектической реакции образуется аустенит. Реакция эта имеет место только у сплавов, содержащих углерода от 0.1 до 0.5 % [10]. При 11300 (горизонталь ECF) протекает эвтектическая реакция LC?AE+Ц. В результате этой реакции образуется эвтектическая смесь. Эвтектическая смесь аустенита и цементита называется ледебуритом. Реакция эта происходит у всех сплавов системы, содержащих углерода более 2 %. При 7230 (горизонталь PSK) протекает эвтектоидная реакция AS?ФР+Ц. Продуктом превращения является эвтектоидная смесь. Эвтектоидная смесь феррита и цементита называется перлитом.

У всех сплавов, содержащих свыше 0.02 % углерода, т.е. практически у всех промышленных железоуглеродистых сплавов, имеет место перлитное (эвтектоидное) превращение. Таким образом, диаграмма железо – углерод характеризует протекание в этих сплавах эвтектического, эвтектоидного и перитектического превращений.

Внешний вид диаграммы железо – углерод (в своей доцементитной части), т.е. расположение линий на диаграмме, является вполне определённым и устоявшимся. Уточнению подвергаются лишь координаты (т.е. температура и концентрация наиболее характерных точек).

Значения координат точек на диаграмме железо – углерод представлены в таблице 1 [10].




Рис. 1. Диаграмма железо – углерод
Таблица 1.

Характерные точки на диаграмме железо – углерод

Обозначение

точки

Температура в 0С

Концентрация

углерода в %

Обозначение точки

Температура в 0С

Концентрация

углерода в %

A

1535

0

D

1600

6.67

B

1485

0.5

G

910

0

H

1485

0.1

P

723

0.02

J

1485

0.16

S

723

0.8

N

1400

0

K

723

6.67

E

1130

2.0

Q

600

0.01

C

1130

4.3

L

600

6.67

F

1130

6.67

-

-

-

Компоненты и фазы железоуглеродистых сплавов


Основными компонентами железоуглеродистых сплавов являются железо, углерод и цементит. Железо – переходный металл серебристо-светлого цвета. Имеет высокую температуру плавления – 15390±50 С. В твердом состоянии железо может находиться в двух модификациях. Полиморфные превращения происходят при температурах 9110 С и 13920 С. При температуре ниже 9110 С существует ?-Fe с объемно-центрированной кубической решеткой. В интервале температур 9110ч13920 С устойчивым является ?-Fe с гранецентрированной кубической решеткой. При температуре ниже 7680 С железо ферромагнитно, а выше – парамагнитно. Точка Кюри железа 7680 С.

Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (предел прочности – ?=250 МПа) и высокими характеристиками пластичности (относительное удлинение – ?=50 %). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна.

Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов. Железо со многими элементами образует твердые растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения [10].

Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 35000С, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления – 50000С).

Так как железо, кроме того, что образует с углеродом химическое соединение Fe3C, имеет две аллотропические формы, то в системе существуют следующие фазы: жидкая фаза, цементит, феррит, аустенит [10].

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы [10].

Цементит – химическое соединение железа с углеродом (карбид железа), содержит 6.67 % углерода. Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу. Температура плавления цементита точно не установлена (1250, 15500С). При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 2170С.

Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность. Такие свойства являются следствием сложного строения кристаллической решетки. Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: азотом, кислородом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.

В железоуглеродистых сплавах также присутствуют фазы: цементит первичный (Ц I), цементит вторичный (Ц II), цементит третичный (Ц III). Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Феррит имеет переменную предельную растворимость углерода: минимальную – 0.006% при комнатной температуре (точка Q), максимальную – 0.02% при температуре 7270С (точка P). Углерод располагается в дефектах решетки. При температуре выше 13920С существует высокотемпературный феррит с предельной растворимостью углерода 0.1% при температуре 14990С (точка J) [10].

Свойства феррита близки к свойствам железа. Он мягок (твердость – 130 НВ, предел прочности ?в=300 МПа) и пластичен (относительное удлинение ?=30 %), магнитен до 7680С [10].

Аустенит ?-Fe (С) – твердый раствор внедрения углерода в ?-железе. В центре гранецентрированной кубической ячейки находится атом углерода. Аустенит имеет переменную предельную растворимость углерода: минимальную – 0.8 % при температуре 7270С (точка S), максимальную – 2.14 % при температуре 11470С (точка Е). Аустенит имеет твердость 200ч250 НВ, пластичен (относительное удлинение – ?=40ч50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования.

Микроструктура чугунов


Получение той или иной структуры чугуна зависит от многих факторов: хи­мического состава чугуна, технологии плавки и внепечной обработки металла, скорости кристаллизации и охлаждении расплава в форме, а, следовательно, толщины стенки отливки, теплофизических свойств материала формы и др. Структуру металлической основы чугуна можно изменять также термической обработкой. В таблице 2 приведены наиболее часто встречающиеся структуры и струк­турные составляющие чугуна и некоторые их свойства [1].

Таблица 2.

Структуры и структурные составляющие чугуна


Структура

Определение

Характеристика

Твёрдость НВ

Цементит

Карбид железа, массо­вая доля углерода 6.67%

Магнитен при температуре ниже 217 0С.

Кристаллическая решётка сложная ромбическая

700

Ледебурит

Механическая смесь, состоящая в момент образования из аусте­нита и цементита (эв­тектика). При даль­нейшем охлаждении аустенит распадается с образованием фер­ритно-цементитной смеси

Массовая доля углерода 4.3%. Отличается большой твёрдостью и хрупкостью. Образуется при температуре 1147 0С (линия ECF на диа­грамме железо-углерод)

Около 700

Графит

Одна из разновидно­стей чистого углерода

Имеет чёрный цвет, выявля­ется на микрошлифе без травления. Кристаллическая решётка гексагональная

-

Аустенит

Твёрдый раствор уг­лерода и других эле­ментов в ?-железе

Немагнитен.

Кристаллическая решётка кубическая гранецентриро­ванная

170-200

Феррит

Твердый раствор уг­лерода и других эле­ментов в ?-железе

Магнитен при температуре ниже 768 0С, кристалличе­ская решётка кубическая объемно-центрированная, массовая доля углерода до 0.02 %

80-100

Перлит

Механическая смесь частиц цементита и феррита, образую­щаяся при полном распаде аустенита (эв­тектоид)

Магнитен. Массовая доля уг­лерода 0.8 %. При пластин­чатой форме цементита на­зывается пластинчатым, при зернистой форме цементита - зернистым

160-200

180-300

Сорбит

Механическая смесь феррита и цементита, отличающаяся от пер­лита более тонким строением (высокой дисперсности)

Магнитен. Образуется в про­цессе ускоренного охлажде­ния при распаде аустенита в интервале температур 600-700 0С (сорбит закалки) или при отпуске мартенсита. Массовая доля углерода ли­митирована.

270-320

Троостит

Механическая смесь феррита и цементита, отличающаяся от сор­бита ещё более высо­кой степенью дис­персности

Магнитен. Образуется при ускоренном охлаждении при распаде аустенита в интер­вале температур 400-600 0С (троостит закалки), а также при отпуске мартенсита (троо­стит отпуска). Массовая доля углерода не лимитирована.

330-450

Бейнит

Механическая смесь пересыщенного угле­родом ?-твёрдого рас­твора и карбидов. Об­разуется в результате распада аустенита в условиях интенсив­ного переохлаждения (обычно 450-200 0С)

Магнитен. Различают верх­ний бейнит, образующийся в верхней зоне промежуточ­ного превращения, и нижний бейнит, образующийся при температурах близких к тем­пературе начала мартенсит­ного превращения

400-500

Мартенсит

Пересыщенный твёр­дый раствор углерода и других элементов в ?-железе, полученный из аустенита в резуль­тате бездиффузного превращения (пере­стройки кристалличе­ской решётки ?-железа без изменения массо­вой доли углерода)

Магнитен.

Кристаллическая решётка кубическая объемно-центрированная. Микроструктура, как правило, игольчатого вида. Образуется в процессе быстрого охлаждения при температуре ниже 200-2500С.

Массовая доля углерода не лимитирована

500-700



Классификации чугунов


Классификация чугунов по химическому составу

В чугунах, кроме железа и углерода, содержатся в качестве постоянных примесей определенные количества кремния, марганца, фосфора и серы. Из них фосфор и сера считаются вредными примесями.

По химическому составу чугуны делятся на нелегированные, мало-, средне- и высоколегированные. Нелегированными считаются чугуны, содержащие до 2 % марганца и до 4 % кремния, до 0.1 % хрома и до 0.1 % никеля. При наличии этих элементов в больших количествах или при содержании специальных примесей чугуны считаются легированными [5].

В малолегированных чугунах количество специальных примесей (никель, медь, хром и т.п.) не превосходит обычно 3 %; в среднелегированных чугунах ко­личество легирующих примесей составляет 7-10 %, а в высоколегированных значительно превышает 10 %.

Путём низкого легирования чугуна стремятся улучшить его общие свойства, получить однородную структуру, повысить предел прочности и упругости с сохранением этих свойств при нагреве, улучшить твёрдость и износостойкость, ан­тифрикционность и т.п. При среднем и высоком легировании значительно меняется состав твёрдых растворов и карбидов, благодаря чему наибольшее значение приобретает измене­ние характера металлической основы [1].
Классификация чугунов по структуре и условиям образования графита

По степени графитизации, формам графита и условиям их образования различают следующие типы чугунов: белый, половинчатый, серый, ковкий и высоко­прочный с шаровидным графитом (см. схему рис. 2). Характер металлической основы чугуна определяется степенью графитиза­ции и легированности, а также видом термической обработки.

По степени графитизации белый чугун можно считать наименее или вовсе неграфитизированным, половинчатые чугуны можно считать частично графитизи­рованными, а остальные чугуны – значительно графитизированными [1].



Рис. 2. Схема классификации чугунов
В белых и половинчатых чугунах обязательно наличие ледебурита (механическая смесь твердого раствора углерода в железе и карбида железа), а в значи­тельно графитизированных чугунах ледебурита не должно быть.

Белым чугуном называется чугун, у которого весь углерод находится в хими­чески связанном состоянии. Белый чугун весьма твёрд, хрупок и очень трудно об­рабатывается резанием. Микроструктура нелегированного белого доэвтектического чугуна состоит из ледебурита, перлита и вторичного цементита. В легированных или термически обработанных чугунах вместо перлита может получаться мартенсит или даже ау­стенит. Белый чугун применяется для изготовления износостойких, коррозионно­стойких и жаростойких деталей. Кроме того, отливки из белого чугуна соответст­вующего состава служат для получения деталей из ковкого чугуна путём графити­зирующего отжига. Белый чугун называется так потому, что вид излома у него светло-кристаллический, лучистый. Для половинчатого чугуна характерно то, что в нём, наряду с ледебуритом, име­ется и графит.

Структура половинчатого чугуна – перлитно-ледебуритная с графитом. В леги­рованных или термически обработанных чугунах вместо перлита можно получить аустенит, мартенсит или бейнит.

Половинчатый чугун называется так потому, что вид излома у него представляет собой сочетание из светлых (белых) и тёмных (графитизированных) участков. По­ловинчатый чугун твёрд и хрупок. У отбеленных чугунных деталей поверхностные слои имеют структуру бе­лого чугуна, а сердцевина – графитизированного чугуна. Между поверхностными слоями и сердцевиной находится зона из половинчатого чугуна.

Серый чугун наиболее распространённый машиностроительный материал. Серый чугун маркируется буквами С – серый и Ч – чугун. После букв следуют цифры, указывающие среднюю величину временного сопротивления при растяже­нии (кгс/мм2) и относительную деформацию.

Главная отличительная особенность серого чугуна заключается в отсутствии недопустимого количества цементита и ледебурита и том, что графит в плоскости шлифа имеет пластинчатую форму. Когда пластинки графита весьма дисперсные, то его называют точечным. Пластинчатые формы графита могут быть прямолиней­ными и различной степени завихрённости. Для получения пластинчатой формы графита необязательны термообработка и специальное модифицирование. Устра­нение графитных включений нежелательных форм и сочетаний достигается модифицированием графитизирующих добавок. Вид излома серого чугуна в значительной степени зависит от количества графита: чем больше графита, тем темнее излом чугуна.

Серому чугуну свойственно почти полное отсутствие относительного удли­нения (до 0.5 %) и весьма низкая ударная вязкость. Эта особенность серого чугуна является следствием весьма сильного ослабляющего действия пластинчатого графита на металлическую основу.

Поскольку серый чугун, независимо от характера металлической основы, об­ладает весьма низкой пластичностью, то стремятся к получению в ней перлитной металлической основы, так как перлит значительно прочнее и твёрже феррита. Снижение же количества перлита и повышение за счёт этого количества феррита в структуре приводит к потере прочности и износостойкости без повышения пластичности.

В легированных и термически обработанных чугунах вместо перлита может быть получен аустенит, мартенсит или бейнит. Включения вторичного и эвтектического цементита большей частью нежела­тельны. Принципиальное отличие высокопрочного чугуна заключается в шаровидной форме графита, которая получается путём внедрения в жидкий чугун специальных модификаторов.

Шаровидная форма графита является наиболее благоприятной из всех из­вестных форм. Шаровидный графит меньше других форм ослабляет металличе­скую основу. Металлическая основа этого чугуна обычно бывает в зависимости от требуемых свойств перлитной, перлитно-ферритной и ферритной. Путём легирова­ния и термической обработки можно также получить аустенитную, мартенситную или бейнитную основу.

В структуре высокопрочного чугуна может допускаться некоторое количе­ство пластинчатого графита при условии, что по своим свойствам он удовлетворяет требуемой марке. Допускаются также и неправильные (искажённые) формы шаровидного графита. Высокопрочный чугун маркируют буквами ВЧ, затем следуют цифры, кото­рые показывают среднее значение временного сопротивления при растяжении (кгс/мм2).

Главное отличие ковкого чугуна заключается в том, что графит в нём получа­ется путём отжига белого чугуна и имеет хлопьевидную или шаровидную форму. Шаровидная форма получается при специальном модифицировании или при обезуглероживающем отжиге. Хлопьевидный графит бывает различной компактности и дисперсности, что значительно отражается на механических свойствах чугуна.

Ковкий чугун производится не только с ферритной, но и с ферритно-перлит­ной и перлитной металлической основой.

Чугун с ферритной основой обладает наибольшей пластичностью, поэтому его чаще всего и применяют. Излом у ферритного ковкого чугуна чёрно-бархати­стый, с увеличением количества перлита в структуре излом становится более светлым.

Ковкий чугун маркируют буквами КЧ и цифрами. Первые две цифры указы­вают временное сопротивление при растяжении (кгс/мм2), вторые – относительное удлинение (%) [1].

Классификация чугунов по свойствам

Классифицировать чугуны можно по механическим и специальным свойст­вам. По механическим свойствам чугунные отливки делят по твёрдости, прочности и пластичности.

Таблица 3.

Классификация чугунов по свойствам.

По твёрдости:


мягкие (твёрдость ?149 НV)

средней твёрдости (149ч197 НV)

повышенной твёрдости (197ч269 НV)

твёр­дые (более 269 НV)

По прочности:

Обыкновенной прочности бывают только серые чугуны. Повышен­ной прочности бывают серые и ковкие чугуны, а высокой прочности – ковкие чу­гуны и чугуны с шаровидным графитом.

обыкновенной прочности (предел прочности ?В?200 МПа),

повышенной прочности (?В=200ч380 МПа)


высокой прочности (?В?400 МПа)

По пластичности:


непластичные (относительное удлинение ??1 %)

малопластичные (?=1ч5 %)

пластичные (?=5ч10 %)

повышенной пластично­сти (??10 %)

По специальным свойствам:


износостойкие

антифрик­ционные

кислотостойкие

жаростойкие

немагнитные и т.п.

ГОСТ 7769-82 «Чугун легированный для отливок со специальными свойст­вами» предусматривает девять марок белых износостойких чугунов: низколегирован­ный хромистый марки ЧХ3Т, высоколегированные хромистые марки ЧХ9Н5, ЧХ16, ЧХ16М2, ЧХ22, ЧХ29Д2, ЧХ32, высолегированный марганцевый марки ЧГ7Х4 и низколегированный никелевый марки ЧН4Х2. Первая буква обозначает «чугун». Цифры показывают содержание легирующего элемента, указанного в про­центах после соответствующей буквы. Если цифра после буквы отсутствует, то со­держание соответствующего легирующего элемента равно 1 %. Другие легирован­ные специальные чугуны маркируют таким же образом, кроме антифрикционных, где первая буква обозначает «антифрикционный». Могут встречаться и термины: «номаг» (немагнитный чугун), «нирезист», «силал», «никросилал» (коррозионно­стойкие), «чугаль» (жаростойкий) и некоторые другие.

Применяемые в настоящее время чугуны в отношении магнитных свойств можно разбить на ферромагнитные и парамагнитные. В свою очередь ферромаг­нитные чугуны можно условно разделить на магнитно-мягкие и магнитно-жёсткие. Это де­ление весьма условно, так как ни при каких условиях чугуны не могут быть в под­линном смысле мягким или жёстким магнитным материалом. К магнитно-мягким относятся серые, ковкие и высокопрочные чугуны [1].

Общая характеристика серых чугунов


Серый чугун получается непо­средственно в процессе кристаллизации с замед­ленным охлаждением, графит при этом имеет пластинчатую форму. В зависимости от степени графитизации мо­жет быть получена различная структура метал­лической основы (матрицы) серого чугуна: се­рый перлитный чугун со структурой П+Г ; серый ферритно-перлитный чугун со структурой Ф+П+Г; серый ферритный чугун со структурой Ф+Г.

Механические свойства серого чугуна как конструкционного материала за­висят как от свойств металлической основы (матрицы), так и от количества, геометрических параметров и ха­рактера распределения включений графита. Чем меньше этих включений и чем они мельче, тем выше прочность чугуна. Металли­ческая основа в сером чугуне обеспечивает наибольшую проч­ность и износостойкость, если она имеет перлит­ную структуру. Наименьшей прочностью облада­ет серый чугун с ферритной основой. Относи­тельное удлинение при растяжении серого чугуна независимо от свойств металлической осно­вы практиче­ски равно нулю (??0,5%).

Наиболее высокими механическими свойства­ми обладают модифицирован­ные ферросилицием и силикокальцием серые чугуны. Модифициро­вание - добавка в расплав нерасплавляющихся измельченных частиц - обеспечивает измельче­ние графитовых включений.

Применяются ферритные и ферритно-перлитные серые чугуны для малонагру­женных деталей сельскохозяйственных машин, автомобилей, тракторов. Чугуны с перлитной основой, обла­дающие очень высокой способностью гасить ме­ханические колебания (высокая демпфирующая способность), применяют для от­ливок станин станков и механизмов, а также для изготовления дизельных цилинд­ров, деталей блока двигателей внутреннего сгорания (поршневые кольца, што­ки).

Микроструктура серых чугунов


При рассмотрении в микроскоп микрошлифа серого чугуна хорошо видны включения пластинчато­го графита (рис.3). На величину и расположение включений графита влияют скорость охлаждения, темпе­ратура и время выдержки рас­плавленного чугуна перед отливкой, химический состав чугуна, введение в чугун неко­торых примесей (модификаторов). Например, скорость охлаждения влияет таким обра­зом, что при прочих равных условиях графит образуется тем крупнее, чем медленнее охлаждение. Чем больше перегрев жидкого чугуна и чем дольше время выдержки при этом, тем мельче получаются графитные включения [8].



Рис. 3. Включения пластинчатого графита. Шлифы нетравленые (х100):

а) прямолинейные; б) завихренные; в) розеточные, г) междендритные
Металлическая основа в серых чугунах очень сходна с микроструктурой сталей и в зависимости от количества связанного углерода может быть ферритной, ферритно-перлитной и перлитной [8].


Рис. 4. Ферритный серый чугун — феррит и пластинчатый графит;

а) микроструктура (х500); б) схема микроструктуры


Рис. 5. Ферритно-перлитный серый чугун – феррит+перлит+ пластинчатый графит: а) микроструктура (х500); б) схема микроструктуры


Рис. 6. Перлитный серый чугун — перлит+пластинчатый графит:

а) микроструктура (х500); б) схема микроструктуры

Таким образом, возможны следующие типы структур серых чугунов: феррит + пластинчатый графит – ферритный серый чугун (рис. 4). Феррит + перлит + пластинчатый графит – ферритно-перлитный серый чугун (рис. 5). Соотношение количества феррита и перлита в структуре чугуна может быть различным в зависимости от химического состава и условий охлаждения. Перлит + пластинчатый графит – перлитный серый чугун на рис. 6.

Рис. 7. Микроструктура серого чугуна с фосфидной эвтектикой:

перлит + пла­стинчатый гра­фит + фосфидная эвтектика (х500)
При повышенных концентрациях фосфора в серых чугунах имеется фосфидная эвтектика (рис. 7), располз­ающаяся полностью или частично по границам зерен.

Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации