Механика - файл n25.doc

Механика
скачать (2280.9 kb.)
Доступные файлы (34):
n1.doc36kb.20.10.2003 17:07скачать
n2.doc29kb.07.06.2004 15:21скачать
n3.doc180kb.03.06.2004 13:23скачать
n4.doc319kb.14.05.2007 16:51скачать
n5.doc30kb.02.04.2004 13:04скачать
n6.doc39kb.14.05.2007 14:51скачать
n7.doc285kb.29.10.2004 13:46скачать
n8.doc169kb.22.10.2003 16:49скачать
n9.doc34kb.04.05.2006 11:17скачать
n10.doc34kb.31.10.2006 17:54скачать
n11.doc137kb.04.05.2006 11:27скачать
n12.doc39kb.12.01.2007 11:25скачать
n13.doc39kb.12.01.2007 11:25скачать
n14.doc374kb.27.12.2006 13:44скачать
n15.doc34kb.12.04.2005 19:19скачать
n16.doc188kb.19.04.2005 18:53скачать
n17.doc28kb.11.01.2005 14:57скачать
n18.doc252kb.21.10.2004 18:50скачать
n19.doc29kb.07.06.2004 14:04скачать
n20.doc695kb.03.06.2004 17:07скачать
n21.doc399kb.02.04.2004 13:40скачать
n22.doc34kb.27.06.2006 14:40скачать
n23.doc197kb.01.06.2006 16:28скачать
n24.doc29kb.06.04.2004 15:32скачать
n25.doc494kb.13.11.2007 17:24скачать
n26.doc28kb.13.04.2004 16:14скачать
n27.doc180kb.27.04.2004 17:39скачать
n28.doc786kb.08.06.2007 16:36скачать
n29.doc36kb.04.06.2007 16:26скачать
n30.doc480kb.25.09.2006 16:46скачать
n31.doc35kb.17.06.2005 23:00скачать
n32.doc128kb.27.06.2005 22:35скачать
n33.doc25kb.29.09.2003 16:20скачать
n34.doc167kb.17.09.2003 17:20скачать

n25.doc




Содержание


  1. Цель работы……………………………………………………………4

  2. Теоретическая часть…………………………………………………..4

2.1. Момент инерции. Теорема Штейнера……………………………...4

2.2. Метод крутильных колебаний……………………………………...6

  1. Приборы и принадлежности………………………………………….8

  2. Требования по технике безопасности………………………………..8

  3. Порядок выполнения работы…………………………………………8

  4. Требования к отчету…………………………………………………10

  5. Контрольные вопросы……………………………………………….10

Список литературы……………………………………………………..11

ЛАБОРАТОРНАЯ РАБОТА № 4



ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДЫХ ТЕЛ

МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ




1. Цель работы


Исследование крутильных колебаний и измерение момента инерции тела сложной формы.

2. Теоретическая часть


2.1. Момент инерции. Теорема Штейнера

Моментом инерции материальной точки относительно оси называют величину

,


где mi – масса материальной точки, ri – расстояние от материальной точки до оси.

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, составляющих его

.

Представляя тело состоящим из малых частей объемом dV и массы dm, его момент инерции можно рассчитать интегрированием

, (2.1)

где ?плотность.

Рассчитаем, например, момент инерции тонкого однородного стержня массы m и длины l относительно оси перпендикулярной стержню и проходящей через его середину (рис. 2.1).

Выделим элемент стержня массы


dm, длины , отстоящий на расстоянии х от центра стержня. Момент инерции этого элемента относительно оси 0y

d J = х2 dm = х2 m/ l ,

а момент инерции всего стержня относительно этой оси будет рррр



равен . (2.2)

Из (2.1) следует, что момент инерции однородного стержня не зависит от его ширины, поэтому формула (2.2) применима для расчета момента инерции тонкой однородной пластины прямоугольной формы.

Если известен момент инерции тела относительно оси, проходящей через центр масс, то момент инерции тела относительно любой параллельной оси можно определить, воспользовавшись теоремой Штейнера, согласно которой момент инерции J тела относительно произвольной оси равен сумме момента инерции Jс тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями

. (2.3)

И
Представим параллелепипед в виде совокупностей сплошных пластин толщиной , длиной b, шириной с, массой dm, отстоящей на расстояние у от оси 0Z рис.2.2. Момент инерции одной пластины относительно оси 0Z определим, используя теорему Штейнера
спользуя уравнение (2.2), теорему Штейнера и уравнение (2.1) рассчитаем момент инерции параллелепипеда относительно оси симметрии.


y

Рис. 2.2
.
Момент инерции параллелепипеда относительно оси 0Z

, (2.4)

где а и b – длины сторон параллелепипеда, расположенные в горизонтальной плоскости, m – масса параллелепипеда.

Момента инерции тела относительно оси является мерой инертности тела при вращательном движении и зависит не только от массы тела, но и от распределения ее в пространстве относительно оси. Тело обладает определенным моментом инерции относительно любой оси независимо от того вращается оно или покоится.
2.2 Метод крутильных колебаний

В настоящей работе моменты инерции твердых тел определяется с помощью крутильных колебаний на установке, представленной на рис. 2.3.

3

4

1

2

Рис. 2.3

Рамка 1 закреплена на натянутой стальной проволоке, проходящей по ее геометрической оси. Если рамку повернуть на некоторый угол ?, то происходит закручивание проволоки. Тогда силы упругости стремятся вернуть рамку в исходное положение. Момент М возвращающей силы при относительно малом угле поворота ? связан с ним соотношением

, (2.5)

где D – коэффициент, называемый модулем кручения проволоки.

Величина D зависит от длины проволоки, ее диаметра и модуля сдвига, характеризующего упругие свойства материала проволоки.

Согласно основного закона динамики вращательного движения, момент силы М, угловое ускорение ? и момент инерции J тела связаны соотношением

. (2.6)

Из (2.5) и (2.6) получаем дифференциальное уравнение, описывающее движение рамки



или

, (2.7)

где .

Решением уравнения (2.7) является гармоническое колебание



с периодом

. (2.8)

Момент инерции J можно найти на основе соотношения (2.8), если узнать величину D. В данной работе определение модуля кручения D не требуется. Измеряется период колебания Т пустой рамки с моментом инерции J, Затем определяется период Т1 колебаний системы, состоящий из рамки с установленными на нее грузами 2 с известным моментом инерции J0. Тогда, согласно формуле (2.8), имеем

. (2.9)

Исключая из (2.8) и (2.9) величину D, получаем формулу для расчета момента инерции J исследуемого тела

. (2.10)
3. Приборы и принадлежности


4. Требования по технике безопасности

4.1. Прежде чем приступить к работе, внимательно ознакомьтесь с заданием и лабораторной установкой.

4.2. По окончании работы приведите в порядок свое рабочее место. Обесточьте прибор.
5. Порядок выполнения работы

1. Установить рамку так, чтобы в положении равновесия флажок рамки находился между окнами фотодатчика 3 рис. 2.2. Установить электромагнит в положение, чтобы угловая амплитуда колебаний рамки составляла 5–10 градусов. Включить электропитание нажатием кнопки «СЕТЬ». Затем повернуть рамку так, чтобы она удерживалась в исходном положении электромагнитом.

2. Измерить длительность времени t для числа полных колебаний рамки N=20. Для этого нажать кнопку «ПУСК». Кнопку «СТОП» нажать, когда число полных колебаний будет равно N – 1.

3. Повторить опыт еще два раза. Рассчитать среднее время tср и определить средний период колебаний Т рамки

. (5.1)

4. Установить два груза (цилиндра) на планку. Три раза определить время t1 20 полных колебаний рамки. По среднему времени определить период колебаний Т1 рамки с грузами.

5. Определить момент инерции рамки Jр по формуле (2.10), где J0 = 2 m (), (m – масса груза; r=0,015 м – радиус груза; l=0,052 м – расстояние от оси вращения рамки до оси грузов).

Результаты измерений занести в таблицу 1.

6. Снять грузы, установить исследуемый образец 4 (по указанию преподавателя) в рамке и закрепить специальными винтами так, чтобы острия винтов входили в углубления на образце вдоль какой – либо из осей ОХ, Оy, ОZ, АС /, ЕК, LM рис. 5.1.

Рис. 5.1

7. Повторив п.2 и п.3 определить время t2 20 колебаний рамки с образцом и по среднему времени рассчитать период Т2.

8. Определить момент инерции исследуемого образца по формуле

. (5.2)

9. Выполнить п. 6 – 8 для всех указанных осей. Результаты занести в таблицу 2.

10. Сравнить результаты определения моментов инерции образца относительно различных осей.

11. Рассчитать относительную и абсолютную погрешности измерения момента инерции образца J относительно одной из осей ОХ, Оy или ОZ (по указанию преподавателя).

12. Рассчитать теоретическое значение момента инерции образца J относительно одной из осей ОХ, Оy или ОZ (по указанию преподавателя) по формуле (2.4)

13. Сравнить результаты экспериментального определения момента инерции образца с теоретически рассчитанным.
Таблица 1

№ опыта

t, с

tср

T, с

t1, с

t1 ср, с

T1, с

Jр, кг·м2

1






















2






















3























Таблица 2

№ опыта

t2, с

t2 ср

T2, с

J, кг·м2

?J, кг·м2

?, %

1



















2



















3




















  1. Требования к отчету


Отчет по лабораторной работе должен содержать:

а) номер и название лабораторной работы;

б) основные формулы для выполнения расчетов;

в) результаты измерений и вычислений;

г) формулы для расчета погрешностей;

д) выводы.

7. Контрольные вопросы


  1. Что называется моментом инерции материальной точки относительно оси? Что называется моментом инерции тела относительно оси?

  2. Каков физический смысл момента инерции?

3. В чем суть теоремы Штейнера?

4. Запишите основной закон динамики вращательного движения и раскройте физический смысл величин, входящих в него.

5. Покажите, что система совершает гармонические колебания, запишите дифференциальное уравнение колебаний и его решение.

6. Выведите формулу для расчета момента инерции однородного параллелепипеда относительно оси симметрии.

Список литературы


  1. Савельев И.В. Курс общей физики. Кн. 1. – М.: Наука, 1998.– 336 с.

2. Детлаф А.Н., Яворский Б.М. Курс физики. – М.: Высшая школа, 2000. – 718 с.

3. Трофимова Т.И. Курс физики. – М.: Высшая школа, 1994.– 542 с.






Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации