Механика - файл n27.doc

Механика
скачать (2280.9 kb.)
Доступные файлы (34):
n1.doc36kb.20.10.2003 17:07скачать
n2.doc29kb.07.06.2004 15:21скачать
n3.doc180kb.03.06.2004 13:23скачать
n4.doc319kb.14.05.2007 16:51скачать
n5.doc30kb.02.04.2004 13:04скачать
n6.doc39kb.14.05.2007 14:51скачать
n7.doc285kb.29.10.2004 13:46скачать
n8.doc169kb.22.10.2003 16:49скачать
n9.doc34kb.04.05.2006 11:17скачать
n10.doc34kb.31.10.2006 17:54скачать
n11.doc137kb.04.05.2006 11:27скачать
n12.doc39kb.12.01.2007 11:25скачать
n13.doc39kb.12.01.2007 11:25скачать
n14.doc374kb.27.12.2006 13:44скачать
n15.doc34kb.12.04.2005 19:19скачать
n16.doc188kb.19.04.2005 18:53скачать
n17.doc28kb.11.01.2005 14:57скачать
n18.doc252kb.21.10.2004 18:50скачать
n19.doc29kb.07.06.2004 14:04скачать
n20.doc695kb.03.06.2004 17:07скачать
n21.doc399kb.02.04.2004 13:40скачать
n22.doc34kb.27.06.2006 14:40скачать
n23.doc197kb.01.06.2006 16:28скачать
n24.doc29kb.06.04.2004 15:32скачать
n25.doc494kb.13.11.2007 17:24скачать
n26.doc28kb.13.04.2004 16:14скачать
n27.doc180kb.27.04.2004 17:39скачать
n28.doc786kb.08.06.2007 16:36скачать
n29.doc36kb.04.06.2007 16:26скачать
n30.doc480kb.25.09.2006 16:46скачать
n31.doc35kb.17.06.2005 23:00скачать
n32.doc128kb.27.06.2005 22:35скачать
n33.doc25kb.29.09.2003 16:20скачать
n34.doc167kb.17.09.2003 17:20скачать

n27.doc

Содержание
1. Цель работы……………………………………………………………4

2. Теоретическая часть………………………………………………..….4

3. Экспериментальная часть……………………………………………..7

3.1. Описание установки…………………………………………………7

3.2. Порядок выполнения работы……………………………………….8

3.2.1. Определение моментов инерции математического и

физического маятников……………………………………………8

3.2.2. Определение момента инерции физического маятника

в зависимости от распределения массы…………………………10

4. Контрольные вопросы……………………………………………….11

Список литературы………………………………………………….11


Лабораторная работа № 5

Определение моментов инерции тел произвольной формы




1. Цель работы

Определение момента инерции математического и физического маятника, а также изучение зависимости момента инерции физического маятника от распределения массы.


2. Теоретическая часть

Основное уравнение динамики вращательного движения тела вокруг неподвижной оси имеет вид:

, (1)

где – векторная сумма моментов всех сил относительно оси вращения, – угловое ускорение тела, т.е. вторая производная по времени от угла поворота ? тела. Соотношение (1) аналогично 2 – му закону Ньютона в динамике поступательного движения и в таком виде записывается в тех случаях, когда момент инерции тела при вращении не изменяется.

Моментом инерции материальной точки относительно некоторой оси называется величина, равная произведению массы точки на квадрат ее расстояния от оси вращения

. (2)

Для протяженных тел момент инерции определяется как сумма моментов инерции элементарных масс (материальных точек), на которые можно разбить тело:

. (3)

Имеются различные методы экспериментального определения моментов инерции. В настоящей работе определение моментов инерции тел произвольной формы производится методом колебаний. Для этих целей измеряется период колебаний Т математического и физического маятников.

Математическим маятником называется материальная точка массой m0, подвешенная на невесомой, нерастяжимой нити и совершающая колебания под действием силы тяжести.

Момент инерции математического маятника

, (4)

где l – длина маятника.

Период колебаний математического маятника определяется по формуле

. (5)

Физическим маятником называется твердое тело, совершающее колебания вокруг неподвижной горизонтальной оси, не совпадающей с его центром инерции, под действием силы тяжести.




Если отклонить маятник от положения равновесия на угол ? (рис. 1), то момент силы, стремящийся вернуть маятник в положение равновесия равен


. (6)

В (6) l – расстояние между точкой подвеса и центром инерции маятника С, m – масса маятника, – плечо силы тяжести. Основное уравнение динамики вращательного движения (1) с учетом (6) можно записать в виде

.

При малых углах отклонения ~ ?, тогда

. (7)

Уравнение (7) можно переписать в виде

(8)

или

. (9)

Решение этого уравнения имеет вид

, (10)

где а и ? – произвольные постоянные. Через ?02 обозначена величина

?02. (11)

Из уравнений (9) и (10) следует, что при малых отклонениях от положения равновесия физический маятник совершает гармонические колебания, частота которых зависит от массы маятника, момента инерции маятника относительно оси вращения и расстояния между осью вращения и центром инерции маятника. Зная ?0, можно рассчитать период колебания Т физического маятника:

?0, . (12)

Из сопоставления формул (5) и (12) следует, что математический маятник длиной

(13)

будет иметь такой же период колебаний, что и данный физический маятник. Величину называют приведенной длиной физического маятника.

Точка на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения О, называется центром качания физического маятника О /.

По теореме Штейнера момент инерции тела относительно любой оси

, (14)

где – момент инерции тела относительно оси, проходящей через центр тяжести, l – расстояние между осями.

Подставим в уравнение (13) момент инерции, определяемый выражением (14):

. (15)

Из уравнения (15) видно, что приведенная длина всегда больше l, так что точка подвеса О и центр качания О / лежат по разные стороны от центра инерции С. Зная период колебания Т, массу маятника m и приведенную длину, можно рассчитать момент инерции J физического маятника:

или . (16)


3. Экспериментальная часть

3.1. Описание установки

Комплексная установка для определения моментов инерции математического и физического маятников (рис. 3.1) состоит из вертикальной стойки 5, основания 6 и элементов подвеса физического и математического маятников. На конце приспособления 4 закреплен зажим 7 для подвеса и изменения длины математического маятника во время его колебаний.

Математический маятник представляет собой стальной шарик 2, подвешенный на нити 3. Длина нити математического маятника может меняться.

Физический маятник сделан из стали в виде длинного стержня 1, на котором в разных местах может закрепляться груз  8. Для подвеса физического маятника в верхней части стойки горизонтально закреплена стальная каленая призма 4. Положение центра инерции физического маятника определяют с помощью специально предназначенной призмы 9. Для измерения времени колебаний используют секундомер 10.


Рис. 3.1


3.2. Порядок выполнения работы

3.2.1. Определение моментов инерции математического и физического маятников

1. Подвешивают физический маятник на призму, закрепив груз 8 в нижнем положении. Отклоняют маятник от вертикали на малый угол (5 – 7°) и отпускают. Измеряют время t 30–ти полных колебаний и определяют период колебаний Т =  (n – число колебаний). Измерения производят не менее трех раз.

2. Подбирают длину математического маятника так, чтобы значения его периода колебаний совпали с периодом колебаний физического маятника: ТМ = ТФ. В этом случае длина математического маятника равна приведенной длине физического маятника lпр.

3. Рассчитывают момент инерции математического маятника по формуле

,

где m0 – масса математического маятника, указанная на установке, l – длина нити, измеряемая линейкой.

4. Определяют ускорение силы тяжести по формуле

.

5. Результаты измерений для математического маятника вносят в таблицу 3.1.

6. Зная массу физического маятника mФ, а также расстояние l (от точки подвеса до центра инерции), рассчитывают момент инерции маятника по формуле (16).

7. Все результаты заносят в таблицу 3.2.
8. Рассчитывают абсолютные и относительные погрешности определения момента инерции JФ.

9. Истинное значение записывают в виде

кг·м2.
Таблица 3.1




m0

(кг)

l

(м)

n

t

(с)

ТМ

(с)

g

(м/с2)

JМ

(кг·м2)

1

2

3
























Таблица 3.2




mФ

(кг)

n

t

(с)

ТФ

(с)

l

(м)

JФ

(кг·м2)

1

2

3



















3.2.2. Определение момента инерции физического маятника в зависимости от распределения массы

1. Подвешивают физический маятник на призму 4. Укрепляют груз 8 в крайнее нижнее положение. Определяют не менее 3-х раз период колебания Т, измеряя время t 30–ти полных колебаний:

.

2. Перемещают груз во 2-е положение, а затем в 3-е, 4-е и, наконец, в самое крайнее верхнее положение и определяют период колебаний Т2, Т3, Т4 и Т5.

3. Измеряют каждый раз расстояние l от точки подвеса до центра инерции с помощью призмы 9 (рис. 3.1).

4. Рассчитывают момент инерции физического маятника

,

а также , , , .

Считают, что

,

где – масса маятника без груза, – масса прикрепляемого груза.

5. Значение ускорения силы тяжести берут из измерений с математическим маятником.

6. Результаты опыта заносят в таблицу 3.3.

7. Рассчитывают абсолютные и относительные погрешности .

8. Строят график зависимости момента инерции от расстояния l от точки подвеса до центра инерции.

9. Истинное значение момента инерции физического маятника записывают в виде

кг·м2.

10. Делают вывод о зависимости момента инерции физического маятника от распределения массы в нем.


Таблица 3.3

Положение

груза




n

t

(с)

Т

(с)

l

(м)

JФ

(кг·м2)

1-е


2-е


3-е


4-е


5-е

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

















4. Контрольные вопросы

1. Что называется математическим маятником?

2. Что такое физический маятник?

3. Какая длина называется приведенной длиной физического маятника?

4. Что называется моментом инерции тела?

5. Как рассчитываются моменты инерции математического и физического маятников?

6. Как устроена установка для определения моментов инерции маятников?

7. Зависит ли момент инерции от распределения массы относительно оси вращения?


Список литературы

1. Савельев И.В. Курс общей физики. Т. 2. – М.: Наука, 1998.

2. Детлаф А.А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1999.

3. Трофимова Т.И. Курс физики. – М.: Высшая школа, 2000.





Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации