Контрольная работа - Основные формально логические законы - файл n1.docx

Контрольная работа - Основные формально логические законы
скачать (48.7 kb.)
Доступные файлы (1):
n1.docx49kb.20.11.2012 04:50скачать

n1.docx

Содержание:
1.   Введение. Специфика логики, как науки……………………………………………..2-3

2.  Логика формальная и диалектическая………………………………………………….3

1)     Формальная логика……………………………………………………………………3-4

2)     Диалектическая логика………………………………………………………………..4

3.  Основные методологические принципы и законы логики……………………………4

1. Закон тождества…………………………………………………………………………...5

2. Закон не противоречия………………………………………………………………….6-7

3. Закон исключенного третьего…………………………………………………………..7-9

a) Требования закона исключенного третьего и их нарушения…………………………9-10

b) Значение закона исключенного третьего………………………………………..…….10-11

4. Закон достаточного основания…………………………………………………………11-12

a)   Сфера деятельности закона достаточного основания……………………………….12-13

b)   Требования и ошибки закона достаточного основания……………………………….13

c)  Значение закона достаточного основания……………………………...……………..13-14

5.  Заключение………………………………………………………………………………14-15

6.  Значение и польза логики……………………………………………………………….15

7. Список литературы………………………………………………………………………16


1.  Введение. Специфика логики, как науки

Свое название логика получила от древнегреческого слова logos, означавшего, с одной стороны, слово, речь, а с другой — мысль, смысл, разум.

Логика, одна из древнейших наук, возникла в проблемном поле философии, более 2300 лет назад, и в трудах древнегреческого философа Аристотеля, впервые показала, как должно совершаться мышление, чтобы была достигнута истина.

Возникая в рамках античной философии как единой, не расчлененной еще на отдельные науки совокупности знаний об окружающем мире, она уже тогда рассматривалась в качестве своеобразной, а именно рациональной, или умозрительной, формы философии — в отличие от натурфилософии (философии природы) и этики (социальной философии).

В своем последующем развитии логика становилась все более сложным, многогранным феноменом духовной жизни человечества. Поэтому естественно, что в разные исторические периоды у разных мыслителей она получала различную оценку. Одни говорили о ней как о некоем техническом средстве — практическом «орудии мысли» («Органон»). Другие усматривали в ней особое «искусство» — искусство мыслить и рассуждать. Третьи находили в ней некий «регулятор» — совокупность или свод правил, предписаний и норм мыслительной деятельности («Канон»). Были даже попытки представлять ее как своеобразную «медицину» — средство оздоровления рассудка.

Во всех подобных оценках, несомненно, содержится доля истины. Но — лишь доля. Главное, что характеризует логику, особенно в настоящее время, это то, что она есть наука — и притом весьма развитая и важная. И как всякая наука, она способна выполнять различные функции в обществе, следовательно, обретать разнообразные «лики».

Какое же место занимает логика в системе наук?

Ныне существует великое множество самых разных отраслей научного знания. В зависимости от объекта исследования они, как известно делятся прежде всего на науки о природе — естественные науки (астрономия, физика, химия, биология и т. д.) и науки об обществе — общественные науки (история, социология, юридические науки и др.).

По сравнению с ними своеобразие логики заключается в том, что ее объектом выступает мышление. Это наука о мышлении. Но если мы дадим логике только такое определение и поставим здесь точку, то допустим серьезную ошибку. Дело в том, что само мышление, будучи сложнейшим явлением, выступает объектом изучения не одной лишь логики, но и ряда других наук — философии, психологии, физиологии высшей нервной деятельности человека, кибернетики, лингвистики...

В чем же специфика логики в сопоставлении именно с этими науками, изучающими мышление? Каков, иначе говоря, ее собственный предмет исследования?

Философия, важнейшим разделом которой выступает теория познания, исследует мышление в целом. Она решает фундаментальный философский вопрос, связанный с отношением человека, следовательно, и его мышления к окружающему миру: как соотносится наше мышление с самим миром, можем ли мы в наших знаниях иметь верную мысленную картину о нем?

Психология изучает мышление, как один из психических процессов наряду с эмоциями, волей и т. д. Она раскрывает взаимодействие с ними; мышления в ходе практической деятельности и научного познания, анализирует побудительные мотивы мыслительной деятельности человека, выявляет особенности мышления детей, взрослых, психически нормальных людей и лиц с теми или иными отклонениями в психике.

Физиология высшей нервной деятельности человека раскрывает материальные, а именно физиологические процессы, протекающие в коре больших полушарий головного мозга человека, исследует закономерности этих процессов, их физико-химические и биологические механизмы.

Кибернетика выявляет общие закономерности управления и связи в живом организме, техническом устройстве, следовательно, и в мышлении человека, связанном прежде всего с его управленческой деятельностью.

Лингвистика показывает неразрывную связь мышления с языком, их единство и различие, их взаимодействие между собой. Она раскрывает способы выражения мыслей с помощью языковых средств.

Своеобразие же логики, как науки о мышлении, как раз и состоит в том, что она рассматривает этот общий для ряда наук объект под углом зрения его функций и структуры, т. е. с точки зрения роли и значения как средства познания действительности и в то же время с точки зрения составляющих его элементов и связей между ними. Это и есть собственный, специфический предмет логики.

Поэтому логика – это наука о формах и законах правильного мышления, ведущего к истине или наука о законах, которым подчиняется правильное мышление. Правильное мышление – мышление, при помощи которого достигается истина.

2.  Логика формальная и диалектическая.

Законы логики являются отражением объективной реальности. Это отражение происходит в процессе взаимодействия человека с окружающим миром. Связь между мыслями в рассуждении представляет собой логический закон. Чтобы установить, является ли связь между высказываниями логическим законом, необходимо вместо нелогических терминов подставлять в эти высказывания произвольные термины тех же типов и при этом всякий раз выяснять, окажется ли истинным выводимое высказывание при истинности исходных. Если всегда обнаруживается такая зависимость истинности высказываний, то связь между ними представляет собой логический закон. В современной логике разработаны более продуктивные методы выявления закономерной связи между мыслями.

1)   Формальная логика – это наука о формах мышления, о формально-логических законах и других связей между мыслями по их логическим формам.

Мышление, которое осуществляется в соответствии с формально-логическими законами, называется правильным.

Формальная логика исследует связи между мыслями, зависящие от их логических форм, т.е. прежде всего от смысла логических терминов, систематизирует типичные ошибки, совершаемые в процессе мышления. Эти связи имеют место независимо от того, знаем ли мы о них или нет. Поскольку логические термины, по крайней мере некоторые, представляют наиболее общие характеристики внеязыковой действительности, постольку в логике выражается знание онтологического характера, знание о том, какими признаками обладает действительность. Такими знаниями, например, являются: (1) “Невозможно существование ситуации и в то же время ее отсутствие, в частности, невозможно наличие свойства у предмета, и в то же время отсутствие этого свойства у предмета”; (2) “У изменяющихся предметов имеются свойства, которые остаются присущими им во многих случаях, по крайней мере, некоторое время”. Знание указанных связей и признаков включаются в мировоззренческую часть науки формальной логики.

2)   Кроме формальной логики существует логика диалектическая, предметом специального изучения которой являются формы и закономерности развития знания. Средства диалектической логики применяются в тех случаях, когда от развития знания отвлекаться нельзя. Диалектическая логика исследует такие формы развития знания, как проблема, гипотеза и т.д., такие методы познания, как восхождение от абстрактного к конкретному, анализ и синтез и т.д.

В процессе познания методы формальной логики дополняются методами диалектической логики, и наоборот. (Ю.В.Ивлев, 1988)

3.   Основные методологические принципы и законы логики

Формально-логические законы связаны многовековой традицией логической науки и играют важную роль в любом, в том числе современном мышлении. Они отражают наиболее простые и вместе с тем необходимые условия правильного мышления.

Особенностью является то, что они носят здесь универсальный характер, т. е. лежат в основе функционирования всего мышления в целом. Можно сказать без преувеличения, что без этих законов процесс мышления в целом был бы попросту невозможен. Ведь в них отражаются фундаментальные — наиболее общие и глубокие свойства, связи и отношения объективного мира, постигаемого нашим мышлением.

Изучение тех и других законов необходимо и важно для понимания сложных глубинных процессов, протекающих в мышлении естественным образом, независимо от нашего осознания их и воли, а также для использования этих законов в практике мыслительной деятельности. Несоблюдение этих законов делает мышление путанным, бессвязным, противоречивым, приводит к ошибкам в рассуждениях.

Знание этих законов необходимо для использования их в практике как научного, так и повседневного мышления и, конечно в юридической практике. Эти принципы выражают наиболее общие требования, которым должны удовлетворять наши рассуждения и логические операции с мыслями, если мы ставим перед собой цель достигать истину рациональными методами.Познавая окружающий мир, Человек отражает в своем мышлении явление действительности. Важным условием достижения истинных знаний является правильная связь мыслей, обусловленная законами формальной логики.

1.    Закон тождества.

Исходным в ряду формально-логических законов выступает закон тождества. С ним органически связан закон противоречия.

Так, закон тождества выражается логической формулой: А ? А (А равносильно А) или А->А («Если А, то А») ;

Закон тождества доказывает то, что всякая мысль тождественна самой себе, «А есть А» ( А     А ), где А – любая мысль. Поваренная соль NaCl состоит из Na и Cl.

При нарушении этого закона возможны следующие ошибки:

Амфиболия (от греческого amphibolos – двусмысленность, двойственность) – логическая ошибка, в основе которой лежит двусмысленность языковых выражений.

Пример:

«Правильно говорят, что язык до Киева доведет. А я купил вчера копченый язык. Теперь смело могу идти в Киев».

Другое название этой ошибки – «подмена тезиса».

Эквивокация – логическая ошибка, в основе которой лежит использование одного и того же слова в разных значениях.

Пример:

«Старый морской волк – это действительно волк. Все волки живут в лесу».

Здесь ошибка обусловлена тем, что в первом суждении слово «волк» используется в качестве метафоры, а во второй посылке – в прямом значении.

Эквивокация часто используется как художественный риторический прием. В логике этот прием еще называют «подмена понятия».

Логомахия – спор о словах, когда в процессе дискуссии участники не могут прийти к единой точке зрения в силу того, что не уточнили исходные понятия.

Таким образом, закон тождества выражает одно из важнейших требований логического мышления – определенность.

Принцип тождества устанавливает требование определенности мышления – в процессе рассуждения, употребляя некоторый термин, мы должны употребить его в одном и том же смысле, понимать под ним нечто определенное. Хотя предметы, существующие в объективной действительности, непрерывно изменяются, в понятиях об этих предметах выделяется нечто неизменное. В процессе рассуждения нельзя изменять понятия без специальной оговорки. По-другому принцип тождества можно назвать принципом оговорок: если изменяешь смысл термина, то оговори это, иначе будешь понят неправильно.

2. Закон не противоречия.

Закон не противоречия выражается формулой: ┐ (А^ ┐А) («Неверно, что А и не-А) ;

Данный закон выражает требование непротиворечивости мышления.

Закон не противоречия гласит: два суждения, из которых в одном утверждается нечто о предмете мысли («А есть В»), а в другом тоже самое отрицается об этом же предмете мысли («А не есть В»), не могут быть одновременно истинными, если при этом признак В утверждается или отрицается о предмете мысли А, рассматриваемом в одно и то же время и в одном и том же отношении, чаще всего пересматривают какую-то часть теории, чтобы избежать противоречия и т.д.

Например, суждения «Кама – приток Волги» и «Кама не является притоком Волги» не могут быть одновременно истинными, если эти суждения относятся к одной и той же реке.

Противоречия не будет, если мы что-либо утверждаем и то же самое отрицаем относительно одного и того же лица, которое, однако, рассматривается в разное время.

Так, суждения «Данный человек – студент КГМА» То мышление, при помощи которого достигается истина» и «Данный человек – не является студентом КГМА» могут быть одновременно истинными, если в первом из них имеется в виду одно время (когда данный человек учится в КГМА), а во втором – другое (когда он закончил институт).

Закон не противоречия указывает на то, что из двух противоположных суждений одно необходимо ложно. Но поскольку он распространяется и на противные, и на противоречащие суждения, вопрос о втором суждении остается открытым: оно не может быть как истинным, так и ложным: бумага не может быть белой и небелой. Правомерность формально-логического закона не противоречия со времен Аристотеля подвергается критике.

Считается, что высказывание формы (А^ ┐А) не является логически-истинным, т.е. есть явления, которые существуют и в то же время не существуют; есть предметы, которые некоторым свойством обладают и в то же время не обладают. Все примеры высказываний о таких явлениях, предметах и свойствах были отвергнуты.

Чаще всего при критике закона не противоречия приводят примеры не формально-логических противоречий (т.е. не противоречий между мыслями, описывающими наличие у предмета свойства и в то же время его отсутствие и т.д.), а примеры так называемых “словесных противоречий”, т.е. высказываний, в одном из которых стоит частица “не” или слово “неверно”, а в другом этой частицы нет. В остальном предложения вроде бы сходны.

Е.К.Войшвилло исследовал следующее “словесное противоречие”: “В данный момент времени тело находится в данной точке, и неверно, что в тот же момент оно находится в данной точке”.

Формально-логический закон не противоречия является мощным инструментом развития знания. В процессе познания из теории, которую считают соответствующей действительности, выводятся следствия, не соответствующие действительности.

Принцип не противоречия требует, чтобы мышление было последовательным. Он требует, чтобы, утверждая нечто о чем-то, мы не отрицали того же о том же в том же самом смысле в то же самое время, т.е. запрещает одновременно принимать некоторое утверждение и его отрицание.
3. Закон исключенного третьего.

Закон исключенного третьего — A v ┐А ; (А или не -А) ;

С законом противоречия, в свою очередь, тесно связан закон исключенного третьего.

Закон не противоречия гласит, что утверждение и отрицание одного и того же не могут быть вместе истинными: одно из них непременно ложно. Но могут ли они быть одновременно ложными? Об этом закон противоречия ничего не говорит.

Открытый Аристотелем, этот закон гласит: «Не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо, что бы то ни было одно либо утверждать, либо отрицать». И в другом месте: «О чем бы то ни было истинно или утверждение, или отрицание...»

Обосновывая неизбежность действия этого закона и невозможность его отрицания, Аристотель приводил ряд (семь!) доводов в его пользу. В более позднее время он получил название закона исключенного третьего, хотя формулировки ему давались самые различные.

Закон исключенного третьего утверждает, что два противоречащих суждения не могут быть одновременно ложными: одно из них необходимо истинно; другое – необходимо ложно; третье суждение исключено, т.е. истинно либо А, либо не -А.

Закон исключенного третьего формулирует важное требование к вашему мышлению: нельзя отклоняться от признания истинным одно из двух противоречащих друг другу высказываний и искать нечто третье между ними. Если одно из них признано истинным, то другое необходимо признать ложным и не искать третье. Животные могут быть позвоночные или не позвоночные, третьего ничего не может быть.

На этот вопрос отвечает закон исключенного третьего. В этом смысле его можно считать дополнением к закону противоречия (а следовательно, и к закону тождества). Его действием также обусловлена так или иначе определенность мышления, его последовательность, непротиворечивость. Но он обладает относительной самостоятельностью, имеет свою сферу действия и свое предназначение в мышлении.

Объективный источник и существо закона исключенного третьего. Подобно законам тождества и противоречия, этот закон имеет объективный источник. В нем отражается та же качественная определенность предметов и явлений действительного мира, сохраняющаяся до поры до времени в процессе их изменения и развития. А это означает, что нечто существует или не существует, входит в какой-то класс предметов или не входит, ему что-то присуще или не присуще и т. д.

Поэтому в той мере, в какой мир альтернативен, раздвоен на «наличие — отсутствие», мышление, если оно верно отражает его, не может не быть тоже альтернативным. В нем неизбежно действует закон исключенного третьего.

Принцип исключенного третьего требует не отвергать одновременно высказывание и его отрицание. Высказывания (А^ ┐А) нельзя отвергнуть одновременно, так как одно из них обязательно истинно, поскольку произвольная ситуация либо имеет, либо не имеет места в действительности.

Согласно этому принципу нужно уточнять наши понятия так, чтобы можно было давать ответы на альтернативные вопросы. Например: “Является ли это деяние преступлением или оно не является преступлением?”. Если бы понятие “преступление” не было точно определено, то в некоторых случаях на этот вопрос невозможно было бы ответить. Другой вопрос: “Солнце взошло или не взошло?”. Представим себе такую ситуацию: Солнце наполовину вышло из-за горизонта. Как ответить на этот вопрос?

Принцип исключенного третьего требует, чтобы понятия уточнялись для возможности давать ответы на такого рода вопросы. В случае с восходом Солнца мы можем, например, договориться считать, что Солнце взошло, если оно чуть-чуть показалось из-за горизонта. В противном случае считать, что оно не взошло.

Уточнив понятия, мы можем сказать о двух суждениях, одно из которых является отрицанием другого, что одно из них обязательно истинно, т.е. третьего не дано.

Чтобы понять действие закона, приведем две пары несовместимых высказываний:

1) «Нива глубокая» — «Нива мелкая»;

2) «Нива глубокая» — «Нива неглубокая».

Обратим внимание, что в первой паре предикатами выступают противоположные понятия («глубокая» — «мелкая»), а во второй — противоречащие понятия («глубокая» — «неглубокая»). Между ними, как мы помним, имеется не только сходство, но и различие. Противоположные отрицают друг друга, но не исчерпывают объема родового понятия. Спрашивается: могут ли два высказывания с противоположными предикатами быть одновременно истинными? Нет. Об этом говорит закон противоречия. Но могут ли они быть одновременно ложными? Да, потому что не исчерпывают всех возможных вариантов. Может статься, что «Нива средней глубины». Закон исключенного третьего здесь не действует.

Что же касается противоречащих понятий («глубокая» — «неглубокая»), то они не только отрицают друг друга, но и исчерпывают объем родового понятия. Возникают те же вопросы. Могут ли оба суждения с подобными предикатами быть одновременно истинными? Нет. Это опять-таки следует из закона противоречия. А могут ли они быть одновременно ложными? Вот тут-то и «зарыта собака». В отличие от первой пары они не могут быть и одновременно ложными. Ведь третьего здесь попросту нет, так как озеро либо глубокое, либо неглубокое. Одно из них непременно истинно. Эта закономерность, свойственная подобным суждениям, и нашла свое отражение в законе исключенного третьего.

Теперь нетрудно понять, какова сфера действия этого закона. Она тоже весьма широка. В общей форме можно сказать так: не всюду там, где действует закон противоречия, действует и закон исключенного третьего. Но всюду, где он проявляет свою силу, проявляется и закон противоречия.

Как и закон противоречия, закон исключенного третьего — результат обобщения практики применения суждений. Но если в законе противоречия выражаются их отношения по истинности, то в законе исключенного третьего — по ложности. Он действует в отношениях между противоречащими (контрадикторными) суждениями (А — О, Е — I).Но он не действует во взаимоотношениях между противоположными (контрарными) суждениями (А — Е), хотя закон противоречия действует и здесь: они не могут быть вместе истинными. но могут быть одновременно ложными. Действие закона исключенного третьего обнаруживается и в сложных суждениях (например. в строгой дизъюнкции, когда составляющие ее суждения взаимно исключают друг друга, а следовательно, не могут быть вместе не только истинными, но и ложными).

Закон исключенного третьего проявляется также в умозаключениях и доказательстве. Например, он лежит в основе непосредственных умозаключений через превращение суждений и через отношение противоречащих (контрадикторных) суждений в логическом квадрате. Без его действия было бы невозможно косвенное доказательство. Устанавливая ложность какого-либо тезиса, мы тем самым доказываем истинность противоречащего ему тезиса, поскольку оба они не могут быть вместе ложными.

a)    Требования закона исключенного третьего и их нарушения.

На основе этого закона можно сформулировать определенные требования к мышлению. Чтобы понять их принципиальный смысл, вспомним историю с буридановым ослом. Как гласит легенда, он сдох с голоду, ибо так и не смог выбрать одну из двух совершенно одинаковых охапок сена. Перед человеком нередко тоже встает дилемма, но уже иная: выбирать не из одинаковых, а из взаимоотрицающих высказываний. Закон исключенного третьего как раз и предъявляет требование выбора — одного из двух — по принципу «или — или», tertium non datur (третьего не дано). Он означает, что при решении альтернативного вопроса нельзя уклоняться от определенного ответа; нельзя искать что-то промежуточное, среднее, третье.

С такого рода альтернативами человек сталкивается довольно часто. Еще в Древнем Риме родилась крылатая фраза: «Aut Caesar, aut nihil» (буквально «Или Цезарь, или ничто»), которую иногда употребляют в обобщенном смысле: «Все или ничего». Подобную интеллектуальную ситуацию гениально выразил У. Шекспир, вложив в уста Гамлета слова, ставшие тоже крылатыми: «Быгь или не быть?» У А. Пушкина мы находим: «Она меня зовет: поеду или нет?» Ясно, что из этих вариантов приходится выбирать: ничего третьего нет.

И в современных условиях возникают альтернативы, требующие однозначного выбора. Вот лишь несколько примеров из газет:

«Либо общими усилиями будет спасен весь мир, либо погибнет вся цивилизация»; «Или дальнейшее утверждение политической целесообразности, или утверждение закона в России».

Нарушение требования выбора проявляется в разных формах. Иногда сам вопрос сформулирован неальтернативно. С давних пор до нас дошла шутка: «Перестал ли ты бить своего отца?» Как правильно ответить? Если «перестал», значит, бил. Если же «не перестал», значит, продолжаешь бить. Тут как раз возможно третье:

«Я его не бил и не бью». Или на вопрос: «Любишь ли ты его?» нередко нельзя ответить по формуле «или — или». Ведь можно кого-то любить, можно презирать или ненавидеть, а можно просто проявлять безразличие или равнодушие.

Но если вопрос сформулирован правильно, то уклонение от определенного ответа на него, поиски чего-то третьего будут ошибкой. Она свойственна людям нерешительным, неуверенным в себе или просто беспринципным.

b)     Значение закона исключенного третьего.

Конечно, как и закон противоречия, этот закон не может точно указать, какое именно из двух противоречащих суждений истинно. Но его значение состоит в том, что он устанавливает для нас вполне определенные интеллектуальные границы, в которых возможен поиск истины. Эта истина заключена в одном из двух отрицающих друг друга высказываний. За этими пределами искать ее не имеет смысла. Сам же выбор одного из суждений в качестве истинного обеспечивается средствами той или иной науки и практики.

В юридическом отношении закон исключения третьего празднует свой триумф. На принципе «или — или» основана, по существу, вся юридическая практика. Еще в афинском суде было установлено двойное голосование судей: первым определялась виновность или невиновность, а вторым — мера наказания. Этим достигалась большая точность в рассмотрении дел.

И в настоящее время суды постоянно сталкиваются с альтернативами. Так, в уголовном судопроизводстве — имело место событие преступления или не имело, находился на месте преступления подозреваемый или не находился, признает он себя виновным или не признает, виновен обвиняемый на самом деле или не виновен, правилен приговор суда или неправилен.

Аналогично и в гражданских делах. Например, если ответчик не признает своего отцовства, то суд может назначить судебно-медицинскую экспертизу, и эксперт либо исключает то, что ребенок мог родиться от данного человека, либо допускает такую возможность. Правда, подобное заключение используется в качестве доказательства лишь в совокупности с другими. Но само решение суда остается однозначным.

В законодательной практике решаются свои альтернативные вопросы. Так, на заседании Государственной Думы либо есть кворум, либо его нет, вопрос вносится в повестку дня или не вносится, то или иное решение принято или не принято. Вспомним электронное табло в зале заседаний депутатов, которое мы не раз наблюдали по телевидению и на

котором всякий раз однозначно высвечивались результаты голосования: либо «решение принято», либо «решение не принято».
4. Закон достаточного основания.

Важное место среди формально-логических законов мышления занимает закон достаточного основания. Он тоже находится в неразрывной связи с остальными. И действительно, если мысль обладает определенностью (закон тождества), то это открывает возможность для установления ее истинности или ложности во взаимоотношениях с другими мыслями (закон противоречия и закон исключенного третьего). Само же установление истинности или ложности мысли невозможно без соответствующего обоснования.

Отсюда — действие закона достаточного основания. Им обусловлена еще одна коренная черта правильного мышления наряду с определенностью и последовательностью, непротиворечивостью — его обоснованность, доказательность.

Считается, что закон достаточного основания символически выразить нельзя, так как это исключительно содержательный закон.

Приведем пример толкования подобных формул.

Так, сложные высказывания типа: «Закон принят, или закон не принят», «Решение суда правильное, или решение суда неправильное», имея формулу Av┐А (закон исключенного третьего), истинны независимо от того, истинны или ложны образующие их элементарные суждения.

Вот таблица истинности этой формулы:

Содержание данного закона можно выразить следующим образом: для

того, чтобы считаться вполне достоверным, всякое положение должно быть доказано, т.е. должны быть известны достаточные основания, в силу которых оно считается истинным.

Достаточным основанием может быть другая, уже проверенная практикой, признанной истинной мысль, необходимым результатом которой является истинность доказываемого положения.

В науке достаточными основаниями считаются: а) положения об удостоверенных фактах действительности, б) научные определения, в) ранее доказанные научные положения, г) аксиомы, а также д) личный опыт.

Логическое основание неразрывно связано с объективным, но в то же время и отлично от него. Объективным основанием служит причина, а результат ее действия — следствие. Логическим же основанием может выступать ссылка как на причину, так и на следствие. Классический пример. Дождь прошел. Это объективное основание (причина) того, что крыши домов мокрые (следствие), но не наоборот. Логических же оснований в рассуждении об этой причинно-следственной связи может быть два: «Крыши домов мокрые, потому что прошел дождь» и «Прошел дождь, потому что крыши домов мокрые». Почему это возможно? Потому что причина и следствие связаны между собой необходимым образом. Если есть причина, то есть и следствие, и наоборот: если есть следствие, то есть и причина.

Объективные предпосылки и смысл закона достаточного основания. Качественно определенные предметы, известным образом соотносящиеся между собой (о чем уже говорилось выше), так или иначе возникают из других предметов и сами, в свою очередь, порождают третьи, изменяются и развиваются в процессе взаимодействия между собой. Следовательно, все в окружающем мире имеет свои основания в другом.

Такая объективно существующая универсальная зависимость одних предметов от других и служит важнейшей предпосылкой возникновения и функционирования в нашем мышлении закона достаточного основания. Этот закон был открыт и впервые сформулирован Г. Лейбницем. Он писал: «Ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым — без достаточного основания, почему именно дело обстоит так, а не иначе...»

Правда, у Лейбница он дан как универсальный закон и бытия, и познания — закон причинности. Применительно лишь к мышлению ему можно дать следующую формулировку: ни одно суждение не может быть признано истинным без достаточного основания. Отсюда — название самого закона. Но почему идет речь именно о «достаточном» основании? Достаточными являются такие фактические и теоретические основания, из которых данное суждение следует с логической необходимостью. Примерная формула закона:«А истинно, потому что есть достаточное основание В».

Принцип достаточного основания требует, чтобы всякое утверждение было в какой-то мере обосновано, т.е. истинность утверждений нельзя принимать на веру. Суждения, из которых выводится утверждение при его обосновании (если считать правила логики данными), называются основаниями, поэтому рассматриваемый принцип называется принципом достаточного основания, что означает: оснований должно быть достаточно для выведения из них рассматриваемого утверждения.

Если требование принципа достаточного основания не выполняется, то утверждения оказываются необоснованными, голословными. (Ю.В.Ивлев, 1994).

a)  Сфера действия закона достаточного основания.

Если закон тождества явился обобщением прежде всего практики оперирования понятиями, а закон противоречия и исключенного третьего — практики функционирования суждений, то закон достаточного основания есть результат обобщения практики получения выводного знания. В нем выражено отношение одних истинные мыслей к другим — отношение логического следования, обеспечивающего в конечном счете их соответствие действительности. Этот закон означает, что в правильном рассуждении вывод всегда достаточно обоснован.

Следовательно, в сферу действия этого закона входят прежде всего умозаключения. Когда, например, из двух посылок: «Все живое смертно» и «Люди — живые существа» мы делаем вывод, что «Все люди смертны». то это означает: «Все люди смертны» потому, что «Все живое смертно». Подведение того или иного предмета мысли под общее понятие служит достаточным основанием для распространения на него всех тех свойств, которые присущи всему классу предметов, мыслимому в этом понятии. Вспомним аксиому простого категорического силлогизма: Dictum de omni et de nullo.

В сфере действия закона достаточного основания находятся также доказательства. Уже само их существование есть показатель того, что такой закон существует. Кроме того, одно из важнейших правил доказательства — правило не только необходимости, но и достаточности оснований — прямо обусловлено действием этого закона. Например, существует объективная связь между ясным мышлением и ясным изложением. Поэтому если мы хотим обосновать, почему человек ясно излагает свои мысли, то можем сослаться на то, что он ясно мыслит. Это достаточное основание. Впрочем, можно сказать и наоборот: «Он ясно мыслит, потому что ясно излагает». Это тоже достаточное логическое основание.

b)  Требования и ошибки закона достаточного основания.

Будучи объективным, закон достаточного основания предъявляет к нашему мышлению важные требования: всякая истинная мысль должна быть обоснованной, или: нельзя признать высказывание истинным, если для него нет достаточных оснований. Иными словами, ничего нельзя принимать на веру: надо основываться на достоверных фактах и ранее доказанных положениях. Этот закон направлен против бессвязных, хаотичных, бездоказательных рассуждений; голого, необоснованного теоретизирования; неоправданных, неубедительных выводов. Он враг всяких догм, пустых верований, суеверий и предрассудков.

Важнейшей логической ошибкой, связанной с нарушением требований закона достаточного основания, выступает «поп sequitur» («не следует») — ошибка «мнимого следования». Она обнаруживается там, где нет достаточной логической связи между посылками и заключением, между тезисом и основаниями, доводами и выводами.

Классический пример с Катюшей Масловой из романа Л. Толстого «Воскресение» В связи с убийством (отравлением) купца Смелькова Маслова была приговорена к каторжным работам и сделано это вследствие не только судебной, но и логической ошибки. Ею как раз и была ошибка под названием поп sequitur («не следует»). Если бы в решении суда присяжных было записано: «Виновна, но без умысла ограбления и без намерения лишить жизни», Маслова была бы оправдана.

c)  Значение закона достаточного основания.

Этот закон, разумеется, ничего не говорит о том, какие конкретно основания для данного вывода являются достаточными. Он только дисциплинирует наше мышление, направляя его на поиск таких оснований, на обеспечение обоснованности вывода.

Это особенно важно в научном познании, прежде всего в теоретических науках, где велика роль выводного знания. Вот почему Г. Лейбниц придавал фундаментальное значение не только принципу противоречия, но и принципу достаточного основания. Он имеет большое значение, в частности, в связи с коренным вопросом теории познания — о критерии истинности наших знаний. Установлено, что таким критерием служит, прежде всего, общественная практика — материально-производственная, общественно-политическая деятельность, практика научных наблюдений и экспериментов. Именно она позволяет надежно отделять истинные знания от ложных. Однако далеко не все знания возможно и необходимо проверять непосредственно на практике. Если мы знаем, что существует закон всемирного тяготения, то нет надобности каждый раз проверять,, упадет предмет или нет, когда мы его выпустим из рук. Это можно сделать и логическим путем: вывести одно знание из другого, уже проверенного на практике и получившего статус истинного. Следовательно, наряду с коренным, практическим критерием истинности наших знаний есть и другой — производный, логический критерий. Весь вопрос только в том, достаточны ли логические основания для того или иного вывода. На правильное решение этого вопроса и ориентирует нас закон достаточного основания.

В практической деятельности тоже важно руководствоваться этим законом. Так, известный русский социолог Питирим Сорокин (с 1922 г. — в эмиграции), выступая против извращений в строительстве социализма в нашей стране, заявлял: «Можно и должно звать всех к производительной работе по возрождению страны, но ниоткуда не следует, что эта работа может и должна совершаться только по штампам и циркулярам в качестве агентов власти и чиновников, или обратно — должна быть непременно работой. низвергающей власть». Таким образом, автор отмечал известное отсутствие последовательности в определенных тогдашних практических действиях власти в стране. И позднее не было достаточных оснований для того, чтобы в экономике страны десятилетиями игнорировать мировой опыт развития рыночных отношений. Но и в настоящее время, когда произошла смена власти, многие ее действия представляются тоже недостаточно обоснованными, правда, уже в ином социальном смысле. Так, нередко опыт предшествующего развития страны огульно отрицается лишь на том основании, что он, в конечном счете, не удался. Однако это еще не достаточное основание для подобного нигилизма.

Закон достаточного основания имеет прямое отношение к юридической практике. В законодательстве довольно широко распространено само понятие «достаточные основания». Так, в уголовном процессе по отношению к обвиняемому (а в исключительных случаях, к подозреваемому) законом предусмотрены меры пресечения при наличии для этого достаточных оснований. Причем сами эти основания раскрываются.

В гражданском законодательстве говорится, что гражданские права и обязанности возникают из предусмотренных законом оснований.

В судебной практике дело может стать предметом судебного разбирательства, если для этого есть достаточные основания. Приговор или решение суда должны быть мотивированными, т. е. обоснованными.

В повседневной речи, говоря о том, что многие законы не действуют, мы приводим в качестве основания то, что нет процедуры их использования и т. д.
5. Заключение

Рассмотренные выше основные формально-логические законы мышления открыты традиционной логикой. Как относится к ним символическая логика? Она основывается на них в своих построениях и процедурах, но в целях решения собственных специфических

задач вносит в них необходимые уточнения и дает им свою символику. Так, раскрывая их единство в определенном отношении, она рассматривает их в качестве тождественно-истинных формул. Что это значит? Многие логические формулы, используемые в символической логике (логике высказываний), оказываются при одних логических значениях своих переменных истинными, а при других — ложными. Тождественно истинные формулы тем и отличаются, что они имеют логическое значение «истина» при всех логических значениях своих переменных. Истинность таких формул обусловлена их логической структурой. Поэтому они называются еще логически истинными формулами. В конечном счете их истинность определяется тем, что в их структуре отражаются наиболее глубокие и общие связи самого объективного мира.

Благодаря табличному способу символическая логика (логика высказываний) в состоянии эффективно выявлять как тождественно-истинные формулы, так и тождественно-ложные формулы — законы логики и логические противоречия. В этом ее громадный шаг вперед по сравнению с традиционной логикой.
6. Значение и польза логики.

Для выяснения значения логики обыкновенно принято исходить из определения ее. Мы видим, что логика определяется как наука о законах правильного мышления. Из этого определения логики, по-видимому, следуем, что стоит изучить законы правильного мышления и применять их в процессе мышления, чтобы можно было мыслить вполне правильно. Многим даже кажется, что логика может указывать средства для открытия истины в различных областях знания. Но в действительности это неверно. Логика не поставляет своею целью открытие истин, а ставит своею целью доказательство уже открытых истин. Формальная логика рассматривает механизмы получения правильности выводов. Диалектическая логика рассматривает процесс развития связи взаимоперехода образа мышления, объективной реальности и процесса мышления.

Логика указывает правила, при помощи которых могут быть открыты ошибки. Вследствие этого, благодаря логике можно избежать ошибок. Поэтому становится понятным утверждение английского философа Д.-С.Милля, что польза логики главным образом отрицательная. Ее задача заключается в том, чтобы предостеречь от возможных ошибок. Вследствие этого практическая важность логики чрезвычайно велика. Многие часто ссылаются на так называемый “здравый смысл” и говорят: “да ведь ошибки можно открывать без помощи логики, посредством лишь одного здравого смысла”. Это, конечно, справедливо, но часто бывает недостаточно найти ошибку, нужно бывает объяснить ее, уметь точно охарактеризовать и даже обозначить ее. Иной знает, что в том или другом умозаключении есть ошибка, но он не в состоянии, почему это умозаключение нужно считать ошибочным. Это часто возможно сделать только благодаря знанию правил логики.

Логика имеет также значение для определения взаимного отношения между науками. Различие между науками, например, биологическими, химическими, физическими может сделаться ясным только в том случае, если мы рассмотрим различие методов познания с логической точки зрения. (Г.И.Челпанов, 1994).

Список литературы :

  1. Логика. Учебник под ред. Иванова Е.И., Москва, 2000 г.

  2. Ильенков Э.В. Диалектическая логика. Очерки истории и теории. – М.: Политиздат, 1974.

  3. Кедров Б.М. Единство диалектики, логики и теории познания. – М.: Гос. издательство политической литературы, 1963

  4. Большой юридический словарь под ред. А. Я. Сухарева, В. Д. Зорькина и др. - М.: ИФРА - М, 1999;

  5. А. Д. Германова «Учебник по логике». «Владов». - М. 1995;





Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации