Органические полимерные материалы - файл n1.doc

Органические полимерные материалы
скачать (109.5 kb.)
Доступные файлы (1):
n1.doc110kb.03.12.2012 21:21скачать

n1.doc

Основные методы получения полимеров
Основную массу полимеров составляют органические вещества, однако известно и немало неорганических и элементорганических полимеров. Характерной чертой полимера является то, что при образовании его молекулы соединяется большое число одинаковых или разных молекул низкомолекулярных веществ — мономеров. Это приводит к тому, что получается длинная цепная молекула, которую называют макромолекулой. Составляющие ее низкомолекулярные повторяющиеся структурные единицы, или элементарные звенья, соединены прочными химическими связями. Сами же макромолекулы связаны между собой слабыми физическими межмолекулярными силами.

Цепное строение макромолекул и различная природа связей вдоль и между цепями определяет комплекс особых физико-химических свойств полимерного материала, таких, как, например, одновременное сочетание в нем прочности, легкости и эластичности, способности образовывать пленки и волокна. Цепное строение макромолекул ответственно также за то, что полимеры могут значительно набухать в жидкостях, образовывая при этом ряд систем, промежуточных между твердым телом и жидкостью. Растворы полимеров отличаются повышенной вязкостью.

Соединение мономеров в макромолекулы происходит в результате химических реакций, которые протекают по законам цепных или ступенчатых процессов. Число повторяющихся звеньев в макромолекуле определяет молекулярную массу полимера, которая может составлять десятки, сотни тысяч и миллионы углеродных единиц. Какой бы реакцией ни был получен полимер, он всегда состоит из набора макромолекул, различных по размеру, поэтому молекулярная масса полимера оценивается некоторой средней величиной,

При переработке, которая обычно проводится при повышенных температурах, в полимер, как правило, вводят различные необходимые добавки, такие как пластификаторы, наполнители, стабилизаторы, модификаторы свойств и другие.

Полимеризация и поликонденсация
Синтетические полимеры получают в результате реакций полимеризации и поликонденсации.

Полимеризация — это процесс соединения друг с другом большого числа молекул мономера за счет кратных связей (С = С, С = О и др.) или раскрытия циклов, содержащих гетероатомы (О, N, S). При полимеризации обычно не происходит образования низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав,

Поликонденсация — зто процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и да более функциональные группы (ОН, СО, СОС, NHS и др.) способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам.
Полимеризация мономеров с кратными связями протекает по законам цепных реакций в результате разрыва непредельных связей. Макромолекула при цепной полимеризации образуется очень быстро и сразу же приобретает конечные размеры, т. е не возрастает при увеличении длительности процесса.

Полимеризация мономеров циклического строения происходит за счет раскрытия цикла и в ряде случаев пропекает не по цепному, а по ступенчатому механизму. Макромолекула при ступенчатой полимеризации образуется постепенно, т. е. сначала образуется димер затем тример и т.д., поэтому молекулярная масса полимера растет со временем.

Принципиальное отличие ценной полимеризации от ступенчатой и от поликонденсации состоит в том, что на разных стадиях процесса реакционная смесь всегда состоит из мономера и полимера и не содержит ди-, три-, тетрамеров. С увеличением продолжительности реакции растет лишь число макромолекул полимера, а мономер расходуется постепенно. Молекулярная масса полимера не зависит от степени завершенности реакции или, что то же, от конверсии мономера, которая определяет только выход полимера.
Реакции в цепях полимеров
Многие полимеры нельзя получить ни полимеризацией, ни поликонденсацией, поскольку или неизвестны исходные мономеры, или мономеры не образуют высокомолекулярных соединения, синтез таких полимеров осуществляют, исходя из высокомолекулярных соединений, макромолекулы которых содержат реакционноспособные функциональные группы. По этим группам полимеры вступают и те же реакции, что и содержащие такие группы низкомолекулярные соединения.

Реакции в цепях полимера могут происходить без существенного изменения молекулярной массы полимера (таи называемые полимер-аналогичные превращения), с увеличением молекулярной массы полимера (синтез привитых и блок сополимеров) или с уменьшением молекулярной массы (деструкция макромолекул).


Особенности строения и свойств.
Полимеры - это высокомолекулярные вещества, молекулы которых состоят из повторяющихся структурных элементов - звеньев, соединенных в цепочки химическими связями, в количестве, достаточном для возникновения специфических свойств. К специфическим свойствам следует отнести следующие способности: способность к значительным механическим обратимым высокоэластическим деформациям; к образованию анизотропных структур; к образованию высоковязких растворов при взаимодействии с растворителем; к резкому изменению свойств при добавлении ничтожных добавок низкомолекулярных веществ.

Приведенные физико-химические особенности можно объяснить исходя из представления о строении полимеров. Говоря о строении следует подразумевать элементный состав вещества, порядок связи атомов, природу связей, наличие межмолекулярных взаимодействий. Характерным для полимеров является наличие длинных цепных молекул с резким различием характера связей вдоль цепи и между цепями. Особенно следует отметить, что нет изолированных цепных молекул. Молекула полимера всегда находится во взаимодействии с окружающей средой, могущей иметь как полимерный характер (случай чистого полимера), так и характер обычной жидкости (разбавленные растворы полимеров). Поэтому для характеристики полимера не достаточно указания типа связей вдоль цепи - необходимо еще иметь сведения о природе межмолекулярного взаимодействия. Следует иметь в виду, что характерные свойства полимеров могут быть реализованы только тогда, когда связи вдоль цепи намного прочнее поперечных связей, образующихся вследствие межмолекулярного взаимодействия любого происхождения. Именно в этом и состоит основная особенность строения полимерных тел. Поэтому можно утверждать, что весь комплекс аномальных свойств полимеров определяется наличием линейных цепных молекул с относительно слабым межмолекулярным взаимодействием. Разветвление этих молекул или соединение их в сетку вносит некоторые изменения в комплекс свойств, но не меняет положения дел по существу до тех пор, пока остаются достаточно длинные цепные линейные отрезки. Напротив, утрата цепного строения молекул при образовании из них глобул или густых сеток приводит к полной утрате всего комплекса характерных для полимеров свойств.

Следствием вышеуказанного является возникновение гибкости цепной молекулы. Она заключается в её способность изменять форму под влиянием теплового движения звеньев или внешнего поля, в которое помещен полимер. Это свойство связано с внутренним вращением отдельных частей молекулы относительно друг друга. В реальных молекулах полимеров валентные углы имеют вполне определённую величину, а звенья расположены не произвольно, и положение каждого последующего звена оказывается зависимым от положения предыдущего.

Полимеры, у которых наблюдаются достаточно интенсивные крутильные колебания, называются гибкоцепными, а полимеры, у которых повороты одной части цепи относительно другой затруднены - жесткоцепными.

Значит, молекулы могут вращаться и изменять своё строение без разрыва химических связей, образуя различные конформации, под которыми понимают различные пространственные формы молекулы, возникающие при изменении относительной ориентации отдельных её частей в результате внутреннего вращения атомов или групп атомов вокруг простых связей, изгиба связей и др.

Таким образом: полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромо­лекулы) состоят из большого числа повто­ряющихся группировок (мономерных звеньев). Атомы, входящие в состав мак­ромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Свойства полимеров.
Линейные полимеры обладают специфическим комп­лексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотроп­ные высокоориентированные волокна и пленки, способность к большим, дли­тельно развивающимся обратимым дефор­мациям; способность в высокоэластичном со­стоянии набухать перед растворением; высокая вязкость растворов. Этот комп­лекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гиб­костью макромолекул. При переходе от линейных цепей к разветвленным, ред­ким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комп­лекс свойств становится всё менее выра­женным. Сильно сшитые полимеры нераство­римы, неплавки и неспособны к высоко­эластичным деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромоле­кулы. В кристаллических полимерах возможно возник­новение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во мно­гом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут нахо­диться в трех физических состояниях: стекло­образном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пласти­ками. В зависимости от химического состава, строения и взаимного расположения мак­ромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообраз­ное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклооб­разный продукт, переходящий в высоко­эластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекуляр­ными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики.

Полимеры могут вступать в следующие основные типы реакций: образование химических свя­зей между макромолекулами (так называемое сши­вание), например при вулканизации кау­чуков, дублении кожи; распад макромо­лекул на отдельные, более короткие фраг­менты, реак­ции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные пре­вращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромоле­кулы, например внутримолекулярная циклизация. Сшивание часто протекает одно­временно с деструкцией. Примером полимераналогичных превращений может слу­жить омыление поливтилацетата, при­водящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомо­лекулярными веществами часто лимити­руется скоростью диффузии последних в фазу полимера. Наиболее явно это проявля­ется в случае сшитых полимеров. Скорость взаи­модействия макромолекул с низкомоле­кулярными веществами часто сущест­венно зависит от природы и расположения соседних звеньев относительно реагирую­щего звена. Это же относится и к внутри­молекулярным реакциям между функ­циональными группами, принадлежащи­ми одной цепи.

Некоторые свойства полимеров, например раствори­мость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств приме­сей или добавок, реагирующих с макро­молекулами. Так, чтобы превратить ли­нейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров - химический состав, молекулярная масса и моле­кулярно-массовое распределение, сте­пень разветвленности и гибкости макро­молекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.
Использование полимеров.
Сегодня можно говорить по меньшей мере о четырех основных направлениях использования полимерных ма­териалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повы­шается до 30%, а сроки созревания ускоряются на 10-14 дней. Использование полиэтиленовой пленки для гид­роизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укры­тие пленкой сенажа, силоса, грубых кормов обеспечива­ет их лучшую сохранность даже в неблагоприятных по­годных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйст­ве - строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпу­скать полотнища пленки шириной до 16 м, а это позво­ляет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизирован­но; более того, эти теплицы позволяют выращивать про­дукцию круглогодично. В холодное время теплицы обо­греваются опять-таки с помощью полимерных труб, за­ложенных в почву на глубину 60-70 см.

С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, непластифицированного поливинилхлорида и в меньшей мере полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.

Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, напри мер, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.

Два остальных главных направления использования полимерных материалов в сельском хозяйстве - строительство, особенно животноводческих помещений, и машиностроение. Начиная с 1975 года весь крупный рогатый скот, а также овцы и козы в государственных хозяйствах Чехословакии должны носить в ушах свое­образные сережки - пластмассовые таблички с указа­нием основных данных о животных. Эта новая форма регистрации животных должна заменить применявшееся ранее клеймение, что признано специалистами негигие­ничным. Миллионы пластмассовых табличек должны вы­пускать артели местной промышленности.

Комплексную задачу очистки сточных вод целлю­лозно-бумажного производства и одновременного произ­водства кормов для животноводства решили финские ученые. Специальную культуру микробов выращивают на отработанных сульфитных щелоках в специальных ферментаторах при 38° С, одновременно добавляя туда аммиак. Выход кормового белка составляет 50-55%; его с аппетитом поедают свиньи и домашняя птица.

Традиционно принято многие спортивные мероприя­тия проводить на площадках с травяным покрытием. Футбол, теннис, крокет... К сожалению, динамичное раз­витие спорта, пиковые нагрузки у ворот или у сетки при­водят к тому, что трава не успевает подрасти от одного состязания до другого. И никакие ухищрения садовников не могут с этим справиться. Можно, конечно, прово­дить аналогичные состязания на площадках, скажем, с асфальтовым покрытием, но как же быть с традицион­ными видами спорта? На помощь пришли синтетические материалы. Полиамидную пленку толщиной 1/40 мм (25 мкм) нарезают на полоски шириной 1,27 мм, вытя­гивают их, извивают, а затем переплетают так, чтобы получить легкую объемную массу, имитирующую траву. Во избежание пожара к полимеру загодя добавля­ют огнезащитные средства, а чтобы из-под ног у спортсменов не посыпались электрическое искры - антиста­тик. Коврики из синтетической травы наклеивают на подготовленное основание - и вот зам готов травяной корт или футбольное поле, или иная спортивная пло­щадка. А по мере износа отдельные участки игрового поля можно заменять новыми ковриками, изготовленны­ми по той же технологии и того же зеленого цвета.

Однако - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров это промышленность. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. маши­ностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37—38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали при­менять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.

При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров ста­ли изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпус­ных деталей машин и механизмов, несущих значитель­ные нагрузки. Ниже будет подробнее рассказано о при­менении полимеров в автомобильной и авиационной промышленности, здесь же упомянем лишь один при­мечательный факт: несколько лет назад по Москве ходил цельнопластмассовый трамвай. А вот другой факт: чет­верть всех мелких судов - катеров, шлюпок, лодок - теперь строится из пластических масс.

До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. Рубеж прочностных свойств полимерных материалов удалось преодолеть переходом к композиционным материалам, главным образом стекло и углепластикам. Так что теперь выражение “пластмасса прочнее стали” звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая именно для полимеров, где четче всего проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки.

То же самое можно сказать и о машиностроении. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок, тканей, искусственной кожи. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход - сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками.

Широко применяются полимерные материалы и в такой отрасли народного хозяйства, как приборостроение. Здесь получен самый высокий экономический эффект в среднем в 1,5-2,0 раза выше, чем в других отраслях машиностроения. Объясняется это, в частности тем, что большая часть полимеров перерабатывается в приборостроении самыми прогрессивными способами что повышает уровень полезного использования (и безотходность отходность) термопластов, увеличивает коэффициент замены дорогостоящих материалов. Наряду с этим значительно снижаются затраты живого труда. Простейшим и весьма убедительным примером может служить изготовление печатных схем: процесс, не мыслимый без полимерных материалов, а с ними и полностью автоматизированный.

Есть и другие подотрасли, где использование полимерных материалов обеспечивает и экономию материальных и энергетических ресурсов, и рост производительности труда. Почти полную автоматизацию обеспечило применение полимеров в производстве тормозных систем для транспорта. Неспроста практически все функциональные детали тормозных систем для автомобилей и около 45% для железнодорожного подвижного состава делаются из синтетических пресс-материалов. Около 50% деталей вращения и зубчатых колес изготовляется из прочных конструкционных полимеров. В последнем случае можно отметить две различных тенденции. С одной стороны, все чаще появляются сообщения об изготовлении зубчатых колес для тракторов из капрона. Обрывки отслуживших свое рыболовных сетей, старые чулки и путанку капроновых волокон переплавляют и формуют в шестерни. Эти шестерни могут работать по­чти без износа в контакте со стальными, вдобавок такая система не нуждается в смазке и почти бесшумна. Дру­гая тенденция - полная замена металлических деталей в редукторах на детали из углепластиков. У них тоже отмечается резкое снижение механических потерь, долговременность срока службы.

Еще одна область применения полимерных материалов в машиностроении, достойная отдельного упомина­ния, - изготовление металлорежущего инструмента. По мере расширения использования прочных сталей н спла­вов все более жесткие требования предъявляются к об­рабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например из рода фианитов), нитриды, карбиды, уже сегодня де­монстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алма­зы, да к тому же им свойствен “королевский порок” - они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпу­скается с применением синтетических смол.

Кстати, те же преимущества стимулируют и широкое применение полимерных материалов в авиационной про­мышленности. Например, замена алюминиевого сплава графитопластиком при изготовлении предкрылка кры­ла самолета позволяет сократить количество деталей с 47 до 14, крепежа - с 1464 до 8 болтов, снизить вес на 22%, стоимость - на 25%. При этом запас прочности изделия составляет 178%. Лопасти вертолета, лопатки вентиляторов реактивных двигателей рекомендуют изго­товлять из поликонденсационных смол, наполненных алюмосиликатными волокнами, что позволяет снизить вес самолета при сохранении прочности и надежности. По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертоле­тов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии. Жест­кие требования были поставлены перед конструкторами первого англо-французского сверхзвукового пассажир­ского самолета “Конкорд”. Было рассчитано, что от тре­ния об атмосферу внешняя поверхность самолета будет разогреваться до 120-150° С, и в то же время требова­лось, чтобы она не поддавалась эрозии в течение по меньшей мере 20000 часов. Решение проблемы было найдено с помощью поверхностного покрытия защиты самолета тончайшей пленкой фторопласта.

Оболочку двигателя ракет изготавливают из углепластика, наматывая на трубу ленту из углеволокна, предварительно пропитанную эпоксидными смолами. По­сле отверждения смолы и удаления вспомогательного сердечника получают трубу с содержанием углеволокна более двух третей, достаточно прочную на растяжение и изгиб, стойкую к вибрациям и пульсации. Остается на­чинить заготовку ракетным топливом, приладить к ней отсек для приборов и фотокамер, и можно отправлять ее в полет.

Таковы лишь некоторые примеры н основные тенденции внедрения полимерных материалов в подотрасли машиностроения. Самое же первое место по темпам рос­та применения пластических масс среди других подот­раслей занимает сейчас автомобильная промышлен­ность. Десять лет назад в автомашинах использовали от 7 до 12 видов различных пластиков, к концу 70-х го­дов это число перешагнуло за 30. С точки зрения хими­ческой структуры, как и следовало ожидать, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Пока еще немного усту­пают им, но активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры. Перечень деталей автомо­биля, которые в тех или иных моделях в наши дни изготовляют из полимеров, занял бы не одну страницу. Ку­зова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шлан­ги, сиденья, дверцы, капот. Более того, не­сколько разных фирм за рубежом уже объявили о нача­ле производства цельнопластмассовых автомобилей. На­иболее характерные тенденции в применении пластмасс для автомобилестроения, в общем, те же, что и в дру­гих подотраслях. Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов. Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижает­ся общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации. В-третьих, выполненные как единое целое, блоки пластмассовых деталей суще­ственно упрощают сборку и позволяют экономить живой труд.
ОЛИГОМЕРЫ – Полимеры сравнительно небольшой молекулярной массы, занимающие по размеру молекул область между мономерами и высокомолекулярными соединениями. К олигомерам относятся многие синтетические смолы,– полиэфирные смолы, эпоксидные смолы, феноло-альдегидные смолы, алкидные смолы. Большинство методов синтеза олигомеров основано на реакциях ограничения роста макромолекул в процессах полимеризации и поликонденсации. Кроме того, олигомеры получают деструкцией высокомолекулярных полимеров или ступенчатым синтезом с выделением продуктов реакции на каждой стадии. Олигомеры широко применяются в производстве слоистых пластиков, пенопластов, лаков, клеев, компаундов, а также в качестве моторных топлив, смазочных масел, теплоносителей, поверхностно-активных веществ.
МОНОМЕРЫ (от греч. monos-один и meros - часть), низкомолекулярные соед., молекулы которых способны реагировать между собой или с молекулами др. соед. с образованием полимеров. мономеры служат соед., содержащие кратные связи (напр., олефины. диены. ацетилены. производные ненасыщ. карбоновых кислот) или циклич. группировки (оксиды олефи-нов, лактамы. лактоны), а также соед. с функц. группами (напр., дикарбоновые кислоты, аминокислоты. гликоли. фенолы. диамины). мономеры, участвующие в сополимеризации или со-поликонденсации, наз. с о м о н о м е р а м и. Широко используют этилен. пропилен. бутадиен, изопрен. стирол. винил-хлорид, акрилонитрил. метилметакрилат. капролактам, те-рефталевую кислоту, этилен.ликоль, фенол, формальдегид.
Физические состояния полимеров
Известны три основных агрегатных состояния веществ — твердое, жидкое и газообразное. В основу такой классификации положена способность тел сохранять свой объем и форму, а также способность сопротивляться воздействию внешних сил. Цепное строение и гибкость макромолекул ответственны за то, что полимеры могут находиться только в жидком или твердом агрегатном состоянии. Газообразное состояние для них невозможно.

С термодинамической точки зрения различают фазовые состояния вещества. Обычно различают кристаллические, жидкие и газообразные фазы. Кристаллические фазы характеризуются дальним порядком в расположении атомов или молекул, образующих фазу, жидкие фазы — ближним порядком, а газообразные — отсутствием порядка в расположении атомов и молекул.

Для аморфного полимера различают три физических состояния — стеклообразное, высокоэластическое и вязкотекучее. Каждое физическое состояние характеризуется определенным комплексом деформационных свойств, знание которых очень важно как при переработке полимеров, так и при эксплуатации изделий из них, Из одного физического состояния в другое полимер переходит при изменении температуры. Изменение температуры влияет на запас тепловой энергии макромолекул (микроскопические свойства) и вызывает изменения в механических свойствах полимеров (макроскопические свойства).

Все три физических состояния высокомолекулярных линейных аморфных полимеров можно наблюдать, снимая термомеханическую кривую, показывающую деформации от температуры. Каждое физическое состояние имеет свою природу и особенности.
Аморфное состояние полимеров
Стеклообразное состояние аморфного полимера сравнивают обычно с состоянием переохлажденной жидкости, высокая вязкость которой исключает ее свободное течение и обеспечивает устойчивость формы, что свойственно как твердому телу. Стеклообразное состояние у низкомолекулярных веществ означает потерю подвижности всех молекул. Стеклообразное состояние у полимеров наблюдается тогда, когда их макромолекулы лишены подвижности. Этого можно достичь понижением температуры. Поскольку макромолекулы совершают движение не как единое целое, а сегментами (т.е. частями, и это отдаленно напоминает движение гусеницы), то для фиксации всей цени достаточно зафиксировать лишь часть сегментов, при этом другая часть на них может сохранять некоторую свободу перемещения. Это обстоятельство является одной из причин больших деформаций полимерных стекол, к которым приложены значительные усилия. При стекловании между макромолекулами не возникает новых типов связей, В затвердевшем полимере наблюдается ближний порядок, а расположении отдельных частей и атомных групп макромолекул.

Стеклообразный полимер (полимерное стекло) — это твердый хрупкий материал, в макромолекулах которого атомы или группы атомов совершают колебательные движения около положения равновесия. Отсутствие подвижности значительной части сегментов цепи из-за высокой вязкости среды обусловливает невозможность конформационных переходов макромолекул. С повышением температуры тепловой энергии может оказаться достаточно, чтобы началось перемещение части сегменте и из одного положения в другое, Внешне это проявляется в том, что наблюдается постепенный переход от свойств твердого, хрупкою материала к свойствам более мягкого пластического тел д. Среднее значение некоторой области температур, в которой наступает сегментальная подвижность макромолекул, называют температурой стеклования Тс.

У линейных полимеров температура стеклования зависит от молекулярной массы, увеличиваясь с ее ростом, Когда же молекулярная масса полимера достигает значения, при котором начинает проявляться гибкость макромолекул, Тс принимает неизменное значение, У пространственных полимеров сшивание макромолекул и образование сетчатой структуры приводит к повышению Тс тем большему, чем гуще пространственная сетка.

Процесс стеклования сопровождается изменением многих свойств полимера - теплопроводности, электрической проводимости, диэлектрической проницаемости, показателя преломления.

При понижении температуры ниже Тс в полимере наблюдается дальнейшее уменьшение теплового движения тех сегментов макромолекул, которые до этого обладали некоторой подвижностью. Чтобы вызвать теперь даже небольшую деформацию застеклованного полимера, нужно приложить к нему большую механическую нагрузку. При этом действующее на полимер напряжение (нагрузка) может оказаться выше его разрушающего напряжения, и полимер разрушается как хрупкое тело при очень малой деформации. Температуру, при которой происходит хрупкое разрушение полимера, называют температурой хрупкости Тхр.

Высокоэластическое состояние полимера характеризуется относительно высокой подвижностью сегментов макромолекул. Это приводит к тому, что макромолекулы стремятся принять конформации, соответствующие различным положениям звеньев в пространстве. Наряду с двумя крайними конформациями — полностью выпрямленной и полностью свернутой — существует множество конформаций, обусловленных разной степенью свернутости макромолекул.

Высокоэластическое состояние проявляется только тогда, когда макромолекулы имеют значительную длину (большую молекулярную массу). Оно особенно свойственно гибкоцепным полимерам, и может проявляться для них уже при комнатной температуре. В случае значительного межмолекулярного взаимодействия высокоэластическое состояние наблюдается при повышенных температурах, то есть когда действие межмолекулярных сил ослабевает. Сравнительная легкость принятия макромолекулой самых различны конформаций под влиянием внешнего механического напряжения объясняет большие деформации в высокоэластическом состоянии (сотни процентов). После снятия нагрузки благодаря тепловому перемещению сегментов макромолекулы возвращаются к исходным кип формациям и деформации исчезает.

В высокоэластическом состоянии деформация носит обратимый характер потому, что время действия внешней механической нагрузки мало в сравнении с тем временем, которое требуется, чтобы макромолекула могла принять конформацию, равновесную для данных условий. Если процесс деформации линейного полимера осуществлять медленно, так, чтобы макромолекулы успели перейти из одной равновесной конформации в другую, вместо высокоэластического состояния полимер окажется в вязкотекучем состоянии.

Высокоэластическое состояние наблюдается в области температур Тс — Тт, где Тт — температура текучести полимера.

В вязкотекучем состоянии полимер представляет собой жидкость и способен необратимо течь под воздействием сравнительно небольших внешних напряжений, т.е. проявлять пластическую деформацию. При течении происходит перемещение целых макромолекул относительно друг друга. Деформация в вязкотекучем состоянии может развиваться бесконечно и носит необратимый характер.
Кристаллическое состояние полимеров
Многие полимеры могут существовать в кристаллическом фазовом состоянии. Так, полиэтилен, полипропилен, натуральный каучук, отдельные эфиры целлюлозы, полиамиды могут образовывать микроскопические кристаллы.

В кристаллическое состояние полимеры переходит из жидкого (расплав, раствор) при понижении температуры. Кристаллизация протекает п результате фиксации положения отдельных сегментов и возникновения элементов дальнего трехмерного порядка в их расположении.

Сетчатые полимеры

СЕТЧАТЫЕ ПОЛИМЕРЫ (трехмерные, или сшитые, полимеры, полимеры с поперечными связями, вулканизац. сетка, полимерная сетка), полимеры со сложной топологич. структурой, образующие единую пространств. сетку. Обычно молекулярная масса (более 109 г/моль) соизмерима с размерами системы, т.е. весь объем полимера представляет собой одну молекулу.
СЕТЧАТЫЕ ПОЛИМЕРЫ содержат узлы сшивки (узлы ветвления)-химические, физические и топологические. В большинстве узлы образованы химическими связями, как, например, в термореактивных полимерах (феноло-, амино-, мочевино-формальдегидные и эпоксидные смолы, полиуретаны и др.), вулканизатах на основе натуральных и синтетич. каучуков, сшитом полистироле. СЕТЧАТЫЕ ПОЛИМЕРЫ п., содержащие узлы сшивки химический природы, обычно нерастворимы ни в каких растворителях (хотя могут набухать в последних) и неплавки. Если же растворение протекает, то оно обычно сопровождается химический деструкцией полимера. По этим же причинам СЕТЧАТЫЕ ПОЛИМЕРЫ п. не могут переходить без деструкции в вязкотекучее состояние при повышении температуры.
Физ. узлы образованы за счет электростатич., ван-дер-ваальсовых или водородных связей. Примерами О, п. с такими узлами могут служить желатин, крахмал, многие линейные или разветвленные полимеры, содержащие полярные группы. Вследствие низкой прочности узлов сшивки эти полимеры могут переходить в вязкотекучее состояние и быть частично или полностью растворимыми.
Линейные полимеры обладают специфическими физико- механическими и химическими свойствами. Важнейшие из этих свойств: способность образовывать высокопрочные волокна и пленки, упругость, высокая вязкость растворов. Эти свойства обусловлены высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным и сетчатым структурам эти свойства ослабевают.

Линейные ВМС могут иметь как кристаллическую, так и аморфную (стеклообразную) структуру. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур Надмолекулярные структуры в аморфных полимерах менее выражены, чем в кристаллических.
Разветвленные (привитые) полимеры образованы цепями с боковыми ответвлениями (число ответвлений и их длина различны). Разветвленные полимеры более прочны, чем линейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.
Линейные и разветвленные полимеры размягчаются (плавятся) при нагревании и вновь затвердевают при охлаждении. Такое свойство полимеров называется термопластичностью, а сами полимеры - термопластичными, или термопластами. Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под действием реагентов. К термопластам относятся поливинилхлорид, полиэтилен, полистирол и др.
Эластомер (Elastomer) — под этим термином понимают полимеры, обладающие в диапазоне эксплуатации высокоэластичными свойствами. Называют резиной или эластомером любой упругий материал, который может растягиваться до размеров, во много раз превышающих его начальную длину (Эластомерная нить), и, что существенно, возвращаться к исходному размеру, когда нагрузка снята. Не все аморфные полимеры являются эластомерами. Некоторые из них являются термопластами. Это зависит от его температуры стеклования: эластомеры обладают низкими температурами стеклования, а термопластики — высокими. (Это правило работает только для аморфных полимеров, а не для кристаллических.)
Также эластомером называют часть амортизатора, выполняющую роль демпфера в пружинно-эластомерных вилках.


Список литературы

1. Коровин Н.В. Общая химия.- М..: Высш. шк., 2002.

2. Ахметов Н.С. Общая и неорганическая химия. - М..: Высш. шк., 2003.

СРС №5. Органические

полимерные материалы.


выполнил:

Группа: ТЭ-112

Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации