Фотоэффект - файл n1.doc

Фотоэффект
скачать (627.5 kb.)
Доступные файлы (1):
n1.doc628kb.20.11.2012 09:08скачать

n1.doc



Содержание
Введение…………………………………….………………………………………………………...….1

История открытия фотоэффекта. Внутренний и внешний фотоэффект…………………………......2

Уравнение Эйнштейна……………………………………………………………………………..……5

Закономерности фотоэффекта………………………………………………………......……..………..6

Применение явления фотоэффекта…………………………………..……………………...……...…..7

Современные исследования………………………………………………………………………….…9

Заключение………………………………………………………………………………...……………11

Список литературы………………………………………………….……………………………...…..12

Введение
Многочисленные оптические явления непротиворечиво объясняли, исходя из представлений о волновой природе света. Однако в конце XIX – начале XX в. были открыты и изучены такие явления, как фотоэффект, рентгеновское излучение, эффект Комптона, излучение атомов и молекул, тепловое излучение и другие, объяснение которых с волновой точки зрения оказалось невозможным. Объяснение новых экспериментальных фактов было получено на основе корпускулярных представлений о природе света. Возникла парадоксальная ситуация, связанная с применением совершенно противоположных физических моделей волны и частицы для объяснения оптических явлений. В одних явлениях свет проявлял волновые свойства, в других корпускулярные.
Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимает фотоэлектрический эффект, то есть испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.


История открытия фотоэффекта. Внутренний и внешний фотоэффект.


Случайные открытия делают только подготовленные умы.

Б. Паскаль




В 1887 г. Генрих Герц (1857—1894) обнаружил, что освеще­ние ультрафиолетовым светом отрицательного электрода искро­вого промежутка, находящегося под напряжением, облегчает проскакивание искры между его электродами. Занятый в то время исследованиями электромагнитных волн, предсказанных Максвеллом, Герц не обратил на это явление серьезного вни­мания. Первые исследования явления принадлежат Гальваксу (1859—1922), Риги (1850—1921) и в особенности А. Г. Столе­тову (1839—1896).



Сущность явления, обнаруженного Герцем, состоит в том, что при освещении ультрафиолетовыми лучами отрицательно заряженного металлического тела оно теряет отрицательный за­ряд. При освещении такими же лучами положительно заряжен­ного тела потери заряда не наблюдается. Более того, если тело не было заряжено, то при освещении оно заряжается положи­тельно до потенциала в несколько вольт. После открытия электрона в 1897 г. Дж. Дж. Томсоном (1856—1940) опытами са­мого Томсона, а также Ленарда (1862—1947) вскоре был найден удельный заряд для частиц, теряемых телами при освещении. Он оказался таким же, как и для частиц катодных лучей. Тем самым было доказано, что при освещении тела теряют электроны.

Явление вырывания электронов из вещества при освещении его светом получило название фотоэлектрического эффекта или, короче, фотоэффекта. Различают фотоэффект внешний, внутренний и вентильный.

Внешним фотоэлектрическим эффектом (фотоэффектом) называется ис­пускание электронов веществом под дей­ствием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводни­ках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

В 1888—1889 гг. А. Г. Столетов подверг фотоэффект систематическому исследованию с помощью установки, схема кото­рой показана на рис.1
.
Рисунок 1

Конденсатор, образованный проволоч­ной сеткой и сплошной пластиной, был включен последовательно с гальванометром G в цепь батареи. Свет, проходя через сетку, падал на сплошную пластину. В результате в цепи возникал ток, регистрировавшийся гальванометром. На основании своих опы­тов Столетов пришел к следующим выводам: 1) наибольшее действие оказывают ультрафиолетовые лучи; 2) сила тока воз­растает с увеличением освещенности пластины; 3) испускаемые под действием света заряды имеют отрицательный знак.

Спустя 10 лет (в 1898 г.) Ленард и Томсон, измерив удель­ный заряд испускаемых под действием света частиц, установили, что эти частицы являются электронами. Ленард и другие исследователи усовершенствовали прибор Столетова, поместив электроды в эвакуированный баллон рис.2. Свет, проникающий через кварцевое окошко Кв, освещает .катод К, изготовленный из исследуемого материала. Электроны, испущенные вследствие фотоэффекта, перемещаются под действием электрического поля к аноду А. В результате в цепи прибора течет фототок, измеряемый гальванометром G. На­пряжение между анодом и катодом можно изменять с помощью потенциометра.

Внутренний фотоэффект — это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В ре­зультате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (по­вышению электропроводности полупро­водника или диэлектрика при его освеще­нии) или к возникновению э. д. с.

Вентильный фотоэффект — возникно­вение э. д. с. (фото-э. д. с.) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преобразо­вания солнечной энергии в электрическую.



Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 
В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U, полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны ?, и при неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения.

Рисунок 2




Приведенная на рис.2 экспериментальная установка, позволяет исследовать вольт-амперную характеристику (т.е. кривую зависимости фототока I от напряжения между электродами U) рис.3.


Рисунок 3
Из вольт-амперной характеристики видно, что:

Пологий ход кривой указывает на то, что электроны вылетают из катода с различными по величине скоростями. Доля электронов, отвечающая силе тока при U=0, обладает скоростями достаточными для того, чтобы долететь до анода «самостоятельно», без помощи ускоряющего поля. Для обращения силы тока в нуль нужно приложить задерживающее напряжение . При таком напряжении ни одному из элек­тронов, даже обладающему при вылете из "катода наибольшим значением скорости , не удаётся преодолеть задерживающее поле и достигнуть анода. Поэтому можно, написать что

(1)

где m — масса электрона. Таким образом, измерив задерживаю­щее напряжение , можно определить максимальное значение скорости фотоэлектронов.

К 1905 г. было выяснено, что максимальная скорость фото­электронов не зависит от интенсивности света, а зависит только от его частоты - увеличение частоты приводит к возрастанию скорости. Установленные экспериментально зависимости не укладываются в рамки классических представлений. Например, скорость фотоэлектронов по классическим понятиям должна воз­растать с амплитудой, а следовательно, и с интенсивностью электромагнитной волны.
Уравнение Эйнштейна
Квантовая механика говорит о многом, но не приближает нас к разгадке тайны Творца.

А. Эйнштейн




В 1905 г. А. Эйнштейн показал, что все закономерности фото­эффекта легко объясняются, если предположить, что свет погло­щается такими же порциями (квантами), какими он, по пред­положению Планка, испускается. По мысли Эйнштейна, энер­гия; полученная электроном, доставляется ему в виде кванта , который усваивается им целиком. Часть этой энергии, рав­ная работе выхода А, затрачивается на то, чтобы электрон мог покинуть тело. Если электрон освобождается светом не у самой поверхности, а на некоторой глубине, то часть энергии, равная , может быть потеряна вследствие случайных столк­новений в веществе. Остаток энергии образует кинетическую энергию электрона, покинувшего вещество. Энергия бу­дет максимальна, если = 0. В этом случае должно выполняться соотношение

(2)

которое называется формулой Эйнштейна.

Фотоэффект и работа выхода в сильной степени зависят от состояния поверхности металла (в частности, от находящихся на ней окислов и адсорбированных веществ). Поэтому долгое время не удавалось проверить формулу Эйнштейна с достаточ­ной точностью. В 1916 г. Милликен создал прибор, в котором исследуемые поверхности подвергались очистке в вакууме, после чего измерялась работа выхода и исследовалась зависимость максимальной кинетической энергии фотоэлектронов от частоты света (эта энергия определялась путем измерения задерживаю­щего потенциала ). Результаты оказались в полном согласии с формулой (2).

Подставив в формулу (2) измеренные значения А и (при данной ), Милликен определил значение постоянной Планка , которое оказалось совпадающим со значениями, най­денными из спектрального распределения равновесного тепло­вого излучения и из коротковолновой границы тормозного рент­геновского спектра.

Дальнейшее усовершенствование методики исследования фо­тоэффекта было осуществлено в 1928 г. П. И. Лукирским и С. С. Прилежаевым, которые создали прибор в виде сфериче­ского конденсатора. Анодом в их приборе служили посеребрен­ные стенки стеклянного сферического баллона. В центре бал­лона помещался катод в виде шарика. При такой форме элек­тродов вольт-амперная характеристика идет круче, что позво­ляет повысить точность определения задерживающего потен­циала.

Из формулы (2) вытекает, что в случае, когда работа выхода А превышает энергию кванта , электроны не могут покинуть металл. Следовательно, для возникновения фотоэф­фекта необходимо выполнение условия , или

(3)

Соответственно для длины волны получается условие

(4)

Частота или длина волны называется красной границей фотоэффекта.

Число высвобождаемых вследствие фотоэффекта электронов должно быть пропорционально числу падающих на поверхность квантов света. Вместе с тем световой поток Ф определяется ко­личеством квантов света, падающих на поверхность в единицу времени. В соответствии с этим ток насыщения должен быть пропорционален падающему световому потоку:

~ Ф (5)

В рассмотренном выше явлении фотоэффекта электрон полу­чает энергию от одного лишь фотона. Такие процессы называ­ются однофотонными. С изобретением лазеров были по­лучены недостижимые до тех пор мощности световых пучков. Это дало возможность осуществить многофотонные про­цессы. В частности, был наблюден многофотонный фотоэффект, в ходе которого электрон, вылетающий из металла, получает энергию не от одного, а от N фотонов (N=2,3,4,5).

Формула Эйнштейна в случае многофотонного фотоэффекта выглядит следующим образом:

(6)

Соответственно красная граница фотоэффекта смещается в сто­рону более длинных волн ( увеличивается в N раз). Формула (5) в случае N-фотонного эффекта имеет вид

. (7)

Закономерности фотоэффекта
Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям электрон при взаимодействии с электромагнитной световой волной должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода.
Применение явления фотоэффекта
Настоящий прогресс человечества зависит не столько от изобретательного ума, сколько от сознательности.

А. Эйнштейн
В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием – фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотомерия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т. д. трудно представить себе без применение фотоэлементов; регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике: контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень разнообразнейших технических вопросов в современной промышленности и связи.

История создания фотоэлементов насчитывает уже более 130 лет. Первый фотоэлемент, основанный на внутреннем фотоэффекте и использующий явление фотопроводимости, был построен в 1875 г., первый же вакуумный фотоэлемент, основанный на внешнем фотоэффекте, был построен в 1889 г. Промышленное производство вакуумных фотоэлементов в России было организовано П.В. Тимофеевым в 1930 г. Интересно отметить, что фотоэлементы, использующие внешний фотоэффект, раньше приобрели широкое развитие, хотя внутренний фотоэффект был открыт по крайней мере на 50 лет раньше. Только в сороковых годах нашего столетия благодаря бурному развитию физики полупроводников и детальному изучению внутреннего фотоэффекта началось создание новых фотоэлементов на основе полупроводниковых материалов.

Огромное разнообразие задач, решаемых с помощью фотоэлементов, вызвало к жизни чрезвычайно большое разнообразие типов фотоэлементов с различными техническими характеристиками. Выбор оптимального типа фотоэлементов для решения каждой конкретной задачи основывается на знании эти характеристик. Для фотоэлементов с внешним фотоэффектом (вакуумных фотоэлементов) необходимо знание следующих характеристик: рабочая область спектра; относительная характеристика спектральной чувствительности (она строится как зависимость от длины волны падающего света безразмерной величины отношения спектральной чувствительности при монохроматическом освещении к чувствительности в максимуме этой характеристики); интегральная чувствительность (она определяется при освещении фотоэлемента стандартным источником света); величина квантового выхода (процентное отношение числа эмитированных фотоэлектронов к числу падающих на фотокатод фотонов); инерционность (для вакуумных фотоэлементов она определяется обычно через время пролета электронов от фотокатода к аноду). Важным параметром служит также темновой ток фотоэлемента, который складывается из термоэмиссии фотокатода при комнатной температуре и тока утечки.

В зависимости от материала фотокатода и материала колбы фотоэлемента их можно применять в диапазоне 0,2 – 1,1 мкм. Их интегральная чувствительность лежит в пределах 20 – 100 мкА на 1 лм светового потока, а термоэмиссия – в пределах . Очень важным достоинством вакуумных фотоэлементов является их высокое постоянство и линейность связи светового потока с фототоком. Поэтому они длительное время преимущественно использовались в объективной фотометрии, спектрометрии, спектрофотометрии и спектральном анализе в видимой ультрафиолетовой областях спектра. Главным недостатком вакуумных фотоэлементов при световых измерениях следует считать малость электрических сигналов, вырабатываемых этими приемниками света. Последний недостаток полностью устраняется в фотоэлектронных умножителях (ФЭУ), представляющих как бы развитие фотоэлементов. ФЭУ были впервые построены в 1934 г.


Рисунок 4

Принцип действия ФЭУ можно проследить на рис 4. Фотоэлектроны, эмитируемые с фотокатода ФК под действием электрического поля, ускоряются и попадают на первый промежуточный электрод . Падая на него, фотоэлектроны вызывают эмиссию вторичных электронов, причем в определенных условиях эта вторичная эмиссия может в несколько раз превышать первоначальный поток фотоэлектронов. Конфигурация электродов такова, что большинство фотоэлектронов попадает на электрод , а большинство вторичных электронов попадает на следующий электрод , где процесс умножения повторяется, и т. д. Вторичные электроны с последнего из электродов (динодов), а их бывает до 10 – 15, собираются на анод. Общий коэффициент усиления таких систем достигает , а интегральная чувствительность ФЭУ достигает тысяч ампер на люмен. Это, конечно, не означает возможности получения больших токов, а свидетельствует лишь о возможности измерения малых световых потоков.

Очевидно, те же технические характеристики, что и у вакуумных фотоэлементов, а также коэффициент усиления и его зависимость от питающего напряжения полностью характеризуют ФЭУ. В настоящее время последние повсеместно вытесняют вакуумные фотоэлементы. К недостаткам ФЭУ следует отнести необходимость применения источника высоковольтного и стабилизированного питания, несколько худшую стабильность чувствительности и большие шумы. Однако путем применения охлаждения фотокатодов и измерения не выходного тока, а числа импульсов, из которых каждый соответствует одному фотоэлектрону, эти недостатки могут быть в значительной степени подавлены.

Большим преимуществом всех приемников света, использующих внешний фотоэффект, является то обстоятельство, что их фототок не изменяется при изменении нагрузки. Это означает, что при малых значениях фототока можно применить практически сколь угодно большое сопротивление нагрузки и тем самым достичь значения падения напряжения на нем, достаточно удобного для регистрации и усиления. С другой стороны, заменяя сопротивление на емкость, можно, измеряя напряжение на этой емкости, получать величину, пропорциональную усредненной величине светового потока за заданный интервал времени. Последнее чрезвычайно важно в тех случаях, когда необходимо измерить световой поток от нестабильного света – ситуация, типичная для спектроаналитических измерений.

Спектрометрия в инфракрасной области спектра не может производиться с помощью вакуумных фотоэлементов и ФЭУ по той причине, что современные фотокатоды имеют красную границу не выше 1100 нм. Однако уже сейчас известны материалы, позволяющие продвинуться до 3 – 4 мкм. Поэтому в инфракрасной области применяются фотоэлементы, работающие на основе внутреннего фотоэффекта. Сюда следует отнести неохлаждаемые фоторезисторы на основе InSb, PbSe и PbS, которые могут быть использованы до 6 мкм, и глубоко охлаждаемые фоторезисторы на основе германия, легированного золотом, цинком, медью и другими металлами, пригодные до 40 мкм.

Для измерения в более длинноволновой области спектра применяются тепловые приемники; последние либо изменяют свою проводимость, либо на них создается э.д.с. при нагревании падающим излучением.

Полупроводниковые фотоэлементы характеризуются не строгой линейностью зависимости величины электрического сигнала от освещения. Этот недостаток, равно как и непостоянство чувствительности фотоэлемента, нестабильность его питания, а также дрейф усиления измерительной схемы, устраняется применением двулучевой системы, в которой измеряется не абсолютное значение интенсивности света, прошедшего через поглощающее вещество, а ее отношение к интенсивности света просвечивающего источника.

В чрезвычайно большом числе случаев применения фотоэлементов не предъявляются строгие требования к их измерительным свойствам. Поэтому фотоэлементы, работающие на основе внутреннего фотоэффекта, в силу их малых габаритов, низких напряжений питания и ряда конструктивных достоинств повсеместно применяются для автоматических систем, систем управления, преобразования солнечной энергии, контроля производства и т. д., за исключением тех случаев, когда относительно невысокие инерционные свойства этих фотоэлементов препятствуют их использованию.
На внешнем фотоэффекте основана работа электронно-оптического преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений. Схема простейшего ЭОП приведена на рис. 5. Световое изображение объекта 1, проецированное на полупрозрачный фотокатод К, преобразуется в электронное изображение 2. Ускоренные и сфокусированные электрическим полем электродов Э электроны попадают на люминесцентный экран Е. Здесь электронное изображение благодаря катодолюминесценции вновь преобразуется в световое3.


Рисунок 5
В медицине ЭОП применяют для усиления яркости рентгеновского изображения, это позволяет значительно уменьшить дозу облучения человека.


Современные исследования
Как показали эксперименты в национальном метрологическом институте Германии Physikalisch-Technische Bundesanstalt, результаты которых опубликованы 24 апреля 2009 года в Physical Review Letters, в мягком рентгеновском диапазоне длин волн при плотности мощности на уровне нескольких петаватт (1015 Вт) на квадратный сантиметр общепринятая теоретическая модель фотоэффекта может оказаться неверной.

Сравнительные количественные исследования различных материалов показали, что глубина взаимодействия между излучением и веществом существенно зависит от структуры атомов этого вещества и корреляции между внутренними электронными оболочками. В случае c ксеноном, который использовался в экспериментах, воздействие пакета фотонов в коротком импульсе приводит, по всей видимости, к одновременной эмиссии множества электронов с внутренних оболочек.

Заключение
Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах. Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма. Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком , и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.


Список литературы


  1. Шпольский Э.В. Атомная физика. Том 1: Введение в атомную физику. Учебное пособие. – 7-е изд. исправл. – М.: Наука. Главная редакция физико-математической литературы, 1984. – 552 с.




  1. E. Becquerel (1839). «Mйmoire sur les effets йlectriques produits sous l’influence des rayons solaires». Comptes Rendus 9: 561—567




  1. БСЭ. Статья «Фотовольтаический эффект»




  1. А.Н.Климов Ядерная физика и ядерные реакторы — Москва: Энергоатомиздат, 1985. — С. 352.




  1. Phys. Rev. Lett. 102, 163002 (2009): Extreme Ultraviolet Laser Excites Atomic Giant Resonance




  1. (http://prl.aps.org/abstract/PRL/v102/i16/e163002)




  1. Физические величины. Справочник, под ред. И. С. Григорьева, Е. 3. Мейлихова, М., 1991, с. 409-12. Т. М. Лифшиц.




  1. Бете Г., Квантовая механика, М., 1965, с. 205-10




  1. http://teachmen.ru/work/lecture/




  1. http://www.britannica.com/EBchecked/topic/457841/photoelectric-effect




  1. http://fizika.ayp.ru/8/8_2.html




  1. Serway, Raymond A. (1990). Physics for Scientists & Engineers (3rd ed.)





Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации