Лекции по экологии - файл n1.doc

Лекции по экологии
скачать (1413.8 kb.)
Доступные файлы (6):
n1.doc1207kb.25.02.2012 19:53скачать
n2.doc203kb.02.10.2011 21:15скачать
n3.doc57kb.11.01.2012 19:38скачать
n4.doc165kb.25.02.2012 19:58скачать
n5.doc88kb.07.12.2011 15:18скачать
n6.doc316kb.25.02.2012 19:59скачать

n1.doc

Тема 1: Оболочки Земли
1. Атмосфера

2. Гидросфера

3. Литосфера
Атмосфе́ра
Атмосфе́ра (от. др.-греч. ἀ??ό? — пар и ???ῖ?? — шар) — газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства. Также существует определение атмосферы, как внешней геологической газовой оболочки Земли[источник не указан 39 дней].

Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата — климатология.

Атмосфера Земли возникла в результате выделения газов при вулканических извержениях. С появлением океанов и биосферы она формировалась и за счёт газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах.

В настоящее время атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).

Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H2O) и углекислого газа (CO2).



Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от ?56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Озо́новый слой — часть стратосферы на высоте от 12 до 50 км (в тропических широтах 25—30 км, в умеренных 20—25, в полярных 15—20), в которой под воздействием ультрафиолетового излучения Солнца молекулярный кислород (О2) диссоциирует на атомы, которые затем соединяются с другими молекулами О2, образуя озон (О3). Относительно высокая концентрация озона (около 8 мл/мі) поглощает опасные ультрафиолетовые лучи и защищает всё живущее на суше от губительного излучения. Более того, если бы не озоновый слой, то жизнь не смогла бы вообще выбраться из океанов и высокоразвитые формы жизни типа млекопитающих, включая человека, не возникли бы. Наибольшая плотность озона встречается на высоте около 20—25 км, наибольшая часть в общем объёме — на высоте 40 км. Если бы можно было извлечь весь озон, находящийся в атмосфере, и сжать под нормальным давлением, то в результате вышел бы слой, покрывающий поверхность Земли толщиной всего 3 мм. Для сравнения, вся сжатая под нормальным давлением атмосфера составляла бы слой в 8 км.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).



Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.

Термосфера

Верхний предел — около 800 км. Температура растёт до высот 200—300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») — основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности — например, в 2008-2009 гг — происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до ?110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~1500 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется
Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа — 40 мм рт. ст., а паров воды — 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным — около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15—19 км.

Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60—90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100—130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана, за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.
Гидросфе́ра
Гидросфе́ра (от др.-греч. Y??? — вода и ???ῖ?? — шар) — это водная оболочка Земли.
Она образует ее прерывистую водную оболочку. Средняя глубина океана составляет 3800 м, максимальная (Марианская впадина Тихого океана) — 11,034 метров. Около 97 % массы гидросферы составляют соленые океанические воды, 2,2 % — воды ледников, остальная часть приходится на подземные, озерные и речные пресные воды. Общий объём воды на планете около 1532000000 кубических километров. Масса гидросферы примерно 1,46*1021 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей планеты. Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн тонн углекислого газа, а растворенного кислорода - 8 трлн тонн. Область биосферы в гидросфере представлена во всей ее толще, однако наибольшая плотность живого вещества приходится на поверхностные прогреваемые и освещаемые лучами солнца слои, а также прибрежные зоны.
В общем виде принято деление гидросферы на Мировой океан, континентальные воды и подземные воды. Большая часть воды сосредоточена в океане, значительно меньше — в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96 % объёма гидросферы составляют моря и океаны, около 2 % — подземные воды, около 2 % — льды и снега, около 0,02 % — поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу.
Поверхностные воды, занимая сравнительно малую долю в общей массе гидросферы, тем не менее играют важнейшую роль в жизни наземной биосферы, являясь основным источником водоснабжения, орошения и обводнения. Сверх того эта часть гидросферы находится в постоянном взаимодействии с атмосферой и земной корой.
Взаимодействие этих вод и взаимные переходы из одних видов вод в другие составляют сложный круговорот воды на земном шаре. В гидросфере впервые зародилась жизнь на Земле. Лишь в начале палеозойской эры началось постепенное переселение животных и растительных организмов на сушу. Океаническую кору слагают осадочный слой и гранитный слой.

Мирово́й океа́н

Мирово́й океа́н — основная часть гидросферы, составляющая 94,1 % всей её площади, непрерывная, но не сплошная водная оболочка Земли, окружающая материки и острова и отличающаяся общностью солевого состава.

Международное гидрогеографическое бюро в 1953 году разработало деление Мирового океана: именно тогда были окончательно выделены Северный Ледовитый, Атлантический, Индийский и Тихий океаны.


География океанов представлена общими физико-географическими сведениями:

- Средняя температура: 5 °C;

- Среднее давление: 20 МПа;

- Средняя плотность: 1,024 г/смі;

- Средняя глубина: 3730 м;

- Общая масса: 1,4Ч1021 кг;

- Общий объём: 1370 млн кмі[7];

- pH: 8,1±0,2.
Глубочайшей точкой океана является Марианская впадина, находящаяся в Тихом океане вблизи Северных Марианских островов. Её максимальная глубина — 11022 м. Она была исследована в 1951 году британской подводной лодкой «Челленджер II», в честь которой самая глубокая часть впадины получила название «Бездна Челленджера».

Воды Мирового океана составляют основную часть гидросферы Земли - океаносферу. На воды океана приходится более 96 % (1338 млн куб. км.) воды Земли. Объем пресных вод, поступающих в океан с речным стоком и осадками, не превышает 0,5 миллионов кубических километров, что соответствует слою воды на поверхности океана толщиной около 1,25 м. Это обуславливает постоянство солевого состава вод океана и незначительные изменения их плотности. Единство океана как водной массы обеспечивается ее непрерывным движением как в горизонтальном, так и в вертикальном направлениях. В океане, как и в атмосфере, нет резких природных границ, все они более или менее постепенны. Здесь осуществляется глобальный механизм трансформации энергии и обмена веществ, который поддерживается неравномерным нагревом солнечной радиацией поверхностных вод и атмосферы.
Систематическое изучение рельефа дна мирового океана началось с появлением эхолота. Большая часть дна океанов представляет собой ровные поверхности, так называемые абиссальные равнины. Их средняя глубина — 5 км. В центральных частях всех океанов расположены линейные поднятия на 1—2 км — срединно-океанические хребты, которые связаны в единую сеть. Хребты разделены трансформными разломами на сегменты, проявляющиеся в рельефе низкими возвышенностями, перпендикулярными хребтам. На абиссальных равнинах расположено множество одиночных гор, часть из которых выступает над поверхностью воды в виде островов. Большинство этих гор — потухшие или действующие вулканы. Под тяжестью горы океаническая кора прогибается и гора медленно погружается в воду. На ней образуется коралловый риф, который надстраивает вершину, в результате формируется кольцевидный коралловый остров — атолл.

Если окраина континента пассивная, то между ним и океаном расположен шельф — подводная часть континента, и континентальный склон, плавно переходящий в абиссальную равнину. Перед зонами субдукции, там, где океаническая кора погружается под континенты, расположены глубоководные желоба — самые глубокие части океанов.

Морские течения — перемещения больших масс океанской воды — оказывают серьёзное влияние на климат многих регионов мира.

Океан играет огромную роль в формировании климата Земли. Под действием солнечной радиации вода испаряется и переносится на континенты, где выпадает в виде различных атмосферных осадков. Океанические течения переносят нагретые или охлаждённые воды в другие широты и в значительной мере ответственны за распределение тепла по планете.

Вода обладает огромной теплоёмкостью, поэтому температура океана меняется гораздо медленнее, чем температура воздуха или суши. Близкие к океану районы имеют меньшие суточные и сезонные колебания температуры.

Если факторы, вызывающие течения, постоянны, то образуется постоянное течение, а если они носят эпизодический характер, то формируется кратковременное, случайное течение. По преобладающему направлению течения делятся на меридиональные, несущие свои воды на север или на юг, и зональные, распространяющиеся широтно. Течения, температура воды в которых выше средней температуры для тех же широт, называют тёплыми, ниже — холодными, а течения, имеющие ту же температуру, что и окружающие его воды, — нейтральными.

На направление течений в Мировом океане оказывает влияние отклоняющая сила, вызванная вращением Земли, — сила Кориолиса. В Северном полушарии она отклоняет течения вправо, а в Южном — влево. Скорость течений в среднем не превышает 10 м/с, а в глубину они распространяются не более чем на 300 м.
Океа́н (греч. ?????ό?, от имени древнегреческого божества Океана) — крупнейший водный объект, составляющая часть Мирового океана, расположенный среди материков, обладающий системой циркуляции вод и другими специфическими особенностями. Площадь поверхности мирового океана, в состав которого входят океаны и моря, составляет около 71 процента поверхности Земли (порядка 361 миллиона квадратных километров). Рельеф дна океанов Земли в целом сложен и разнообразен.

Наука, изучающая океаны, называется океанологией.

Моря Атлантического океана - Балтийское, Северное, Средиземное, Чёрное, Саргассово, Карибское, Адриатическое, Азовское, Балеарское, Ионическое, Ирландское, Мраморное, Тирренское, Эгейское; Бискайский залив, Гвинейский залив, Мексиканский залив, Гудзонов залив

Также относящиеся к Южному океану: Уэдделла, Скоша, Лазарева

Моря Индийского океана - Андаманское, Аравийское, Арафурское, Красное, Лаккадивское, Тиморское; Бенгальский залив, Персидский залив

Также относящиеся к Южному океану: Рисер-Ларсена, Дейвиса, Космонавтов, Содружества, Моусона

Моря Северного Ледовитого океана - Норвежское, Баренцево, Белое, Карское, Лаптевых, Восточно-Сибирское, Чукотское, Гренландское, Бофорта, Баффина, Линкольна

Моря Тихого океана - Берингово, Охотское, Японское, Восточно-Китайское, Жёлтое, Южно-Китайское, Яванское, Сулавеси, Сулу, Филиппинское, Коралловое, Фиджи, Тасманово

Также относящиеся к Южному океану: Дюрвиля, Сомова, Росса, Амундсена, Беллинсгаузена
Подзе́мные во́ды

Подзе́мные во́ды — воды, находящиеся в толще горных пород верхней части земной коры в жидком, твёрдом и газообразном состоянии.

Подземные воды — часть водных ресурсов Земли; общие запасы подземных вод составляют свыше 60 млн кмі. Подземные воды рассматриваются как полезное ископаемое. В отличие от других видов полезных ископаемых, запасы подземных вод возобновимы в процессе эксплуатации.

По условиям залегания подземные воды подразделяются на:

- почвенные;

- грунто́вые;

- межпластовые;

- артезианские;

- минеральные.

Почвенные воды заполняют часть промежутков между частицами почвы; они могут быть свободными (гравитационными), перемещающимися под влиянием силы тяжести, или связанными, удерживаемыми молекулярными силами.

Грунто́вые воды образуют водоносный горизонт на первом от поверхности водоупорном слое. В связи с неглубоким залеганием от поверхности уровень грунтовых вод испытывает значительные колебания по сезонам года: он то повышается после выпадения осадков или таяния снега, то понижается в засушливое время. В суровые зимы грунтовые воды могут промерзать. Эти воды в большей мере подвержены загрязнению.

Межпластовые воды — нижележащие водоносные горизонты, заключенные между двумя водоупорными слоями. В отличие от грунтовых, уровень межпластовых вод более постоянен и меньше изменяется во времени. Межпластовые воды более чистые, чем грунтовые. Напорные межпластовые воды полностью заполняют водоносный горизонт и находятся под давлением. Напором обладают все воды, заключенные в слоях, залегающих в вогнутых тектонических структурах.

По условиям движения в водоносных слоях различают подземные воды, циркулирующие в рыхлых (песчаных, гравийных и галечниковых) слоях и в трещиноватых скальных породах.

В зависимости от залегания, характера пустот водовмещающих пород, подземные воды делятся на:

поровые — залегают и циркулируют в четвертичных отложениях: в песках, галечниках и др. обломочных породах;

трещинные (жильные) — в скальных породах (гранитах, песчаниках);

карстовые (трещинно-карстовые) — в растворимых породах (известняках, доломитах, гипсах и др.).
Грунтовые воды — источник водоснабжения

Г. в. в силу относительно лёгкой доступности имеют большое значение для народного хозяйства как источники водоснабжения промышленных предприятий, городов, посёлков, населенных пунктов в сельской местности и т. д..

Для добычи Г.в. делают колодцы, скважины с гравийной отсыпкой в сочетании с фильтрами из сетки галунного плетения.

При этом важным показателем является Качество грунтовых вод. В условиях влажного климата развиваются интенсивные процессы инфильтрации и подземного стока, сопровождаемые выщелачиванием почв и горных пород. При этом легко растворимые соли — хлориды и сульфаты — выносятся из пород и почв; в результате длительного водообмена формируются пресные Г. в., минерализованные лишь за счёт относительно мало растворимых солей (преимущественно гидрокарбонатов кальция). В условиях засушливого тёплого климата (в сухих степях, полупустынях и пустынях) вследствие кратковременности выпадения и малого количества атмосферных осадков, а также слабой дренированности местности подземный сток Г. в. не развивается; в расходной части баланса Г. в. преобладает испарение и происходит их засоление. Вблизи рек, водоемов, водохранилищ и т. п. грунтовые воды в значительной степени опреснены и по качеству могу удовлетворять нормам питьевой воды.

Минерализация - сумма всех минеральных веществ, растворённых в воде, выраженная в граммах абсолютно сухого остатка, полученного выпариванием 1 литра воды. Классификация вод по степени минерализации:

- Пресные - до 1 г/л. Преобладающий химический тип вод: гидрокарбонатные кальциевые.

- Слабосолоноватые - 1-3 г/л. Сульфатные, реже хлоридные.

- Солоноватые - 3-10 г/л. Сульфатные, реже хлоридные.

- Солёные - 10-15 г/л. Сульфатные, хлоридные.

- Рассолы - больше 50 г/л. Хлоридно-натриевые.

Жёсткость воды обусловлена присутствием в воде ионов кальция и магния. Общая жёсткость – это сумма мг.экв. ионов Ca и Mg в литре воды. По общей жёсткости воды подразделяются на 5 типов:

- очень мягкая: <1,5 мг.экв./л,

- мягкая: 1,5 - 3 мг.экв./л,

- умеренно жёсткая: 3-6 мг.экв./л,

- жёсткая: 6-9 мг.экв./л,

- очень жёсткая: >9 мг.экв./л.

Вблизи свалок, скотомогильников, различного рода химических, радиоактивных захоронений Г.в. грунтовые воды заражены. Г.в. являются показателем чистоты почв, местности.
Река́

Река́ — природный водный поток (водоток), текущий в выработанном им углублении — постоянном естественном русле и питающийся за счёт поверхностного и подземного стока с его бассейна.

Реки являются предметом изучения одного из разделов гидрологии суши — речной гидрологии (потамологии).
В каждой реке различают место её зарождения — исток и место (участок) впадения в море, озеро или слияния с другой рекой — устье.

Реки, непосредственно впадающие в океаны, моря, озёра или теряющиеся в песках и болотах, называются главными; впадающие в главные реки — притоками.

Главная река со всеми её притоками образует речную систему, которая характеризуется густотой речной сети.

Поверхность суши, с которой речная система собирает свои воды, называется водосбором, или водосборной площадью. Водосборная площадь вместе с верхними слоями земной коры, включающая в себя данную речную систему и отделённая от других речных систем водоразделами, называется речным бассейном.

Реки обычно текут в вытянутых пониженных формах рельефа — долинах, наиболее пониженная часть которых называется руслом, а часть дна долины, заливаемая высокими речными водами, — поймой, или пойменной террасой.

В руслах чередуются более глубокие места — плёсы и мелководные участки — перекаты. Линия наибольших глубин русла называется тальвег, близко к которому обычно проходит судовой ход, фарватер; линия наибольших скоростей течения называется стрежнем.

Границей водотока реки называется берег, в зависимости от расположения по течению относительно средней линии русла водотока различают правый и левый берега водотока.

Разность высот между истоком и устьем реки называется падением реки; отношение падения реки или отдельных её участков к их длине называется уклоном реки (участка) и выражается в процентах (%) или в промилле (‰).

На равнинных реках уклон реки составляет порядка сотых долей промилле (первые единицы и десятки сантиметров на километр). Например, средний уклон реки Волги составляет 0,07 промилле (7 см на 1 км), в низовьях — 3-5 промилле. На горных реках уклон реки может быть в сотни раз больше (метры и десятки метров на километр и больше).

В зависимости от рельефа местности, в пределах которой текут реки, они разделяются на горные и равнинные. На многих реках перемежаются участки горного и равнинного характера. Горные реки, как правило, отличаются большими уклонами, бурным течением, текут в узких долинах; преобладают процессы размыва. Для равнинных рек характерно наличие извилин русла, или меандр, образующихся в результате русловых процессов. На равнинных реках чередуются участки размыва русла и аккумуляции на нём наносов, в результате которой образуются осерёдки и перекаты, а в устьях — дельты. Иногда ответвлённые от реки рукава сливаются с другой рекой.

По поверхности земного шара реки распределены крайне неравномерно. На каждом материке можно наметить главные водоразделы — границы областей стока, поступающего в различные океаны. Главный водораздел Земли делит поверхность материков на 2 основных бассейна: атлантико-арктический (сток с площади которого поступает в Атлантический и Северный Ледовитый океаны) и тихоокеанский (сток в Тихий и Индийский океаны). Объём стока с площади первого из этих бассейнов значительно больше, чем с площади второго.

Густота речной сети и направление течения зависят от комплекса современных природных условий, но часто в той или иной мере сохраняют черты прежних геологических эпох. Наибольшей густоты речная сеть достигает в экваториальном поясе, где текут величайшие реки мира — Амазонка, Конго; в тропических и умеренных поясах она также бывает высокой, особенно в горных районах (Альпы, Кавказ, Скалистые горы и др.). В пустынных областях распространены эпизодически текущие реки, превращающиеся изредка при снеготаянии или интенсивных ливнях в мощные потоки (реки равнинного Казахстана).
Литосфе́ра
Литосфе́ра (от греч. ?ί??? — камень и ???ί?? — шар, сфера) — твёрдая оболочка Земли.

Состоит из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. В строении литосферы выделяют подвижные области (складчатые пояса) и относительно стабильные платформы.

Блоки литосферы — литосферные плиты — двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящен раздел геологии о тектонике плит.

Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толща составляет 5—10 км, а гранитный слой полностью отсутствует.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium — кремний) и Al (лат. Aluminium — алюминий).
Земна́я кора́ — внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича, или сокращённо Мохо, на которой происходит резкое увеличение скоростей сейсмических волн. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.

Кора есть на большинстве планет земной группы, Луне и многих спутниках планет-гигантов. В большинстве случаев она состоит из базальтов. Земля уникальна тем, что обладает корой двух типов: континентальной и океанической.

Масса земной коры оценивается в 2,8Ч1019 тонн (из них 21 % — океаническая кора и 79 % — континентальная). Кора составляет лишь 0,473 % общей массы Земли.
Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней юрой.

Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.

В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растет пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 120-130 километров. Средняя толщина земной коры от 5 до 70 км.
Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой — слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород — гранулитов и им подобных.

Наиболее изучен Состав верхней континентальной коры.

Земную кору составляет сравнительно небольшое число элементов. Около половины массы земной коры приходится на кислород, более 0,25 — на кремний. Всего 18 элементов: O, Si, Al, Fe, Ca, Na, K, Mg, H, Ti, C, Cl, P, S, N, Mn, F, Ba — составляют 99,8 % массы земной коры.
Определение состава верхней континентальной коры стало одной из первых задач, которую взялась решать молодая наука геохимия. Собственно из попыток решения этой задачи и появилась геохимия. Эта задача весьма сложна, поскольку земная кора состоит из множества пород разнообразного состава. Даже в пределах одного геологического тела состав пород может сильно варьировать. В разных районах могут быть распространены совершенно разные типы пород. В свете всего этого и возникла задача определения общего, среднего состава той части земной коры, что выходит на поверхность на континентах. С другой стороны, сразу же возник вопрос о содержательности этого термина.

Первая оценка состава верхней земной коры была сделана Кларком. Кларк был сотрудником геологической службы США и занимался химическим анализом горных пород. После многих лет аналитических работ, он обобщил результаты анализов и рассчитал средний состав пород. Он предположил, что многие тысячи образцов, по сути, случайно отобранных, отражают средний состав земной коры (см. Кларки элементов). Эта работа Кларка вызвала фурор в научном сообществе. Она подверглась жёсткой критике, так как многие исследователи сравнивали такой способ с получением «средней температуры по больнице, включая морг». Другие исследователи считали, что этот метод подходит для такого разнородного объекта, каким является земная кора. Полученный Кларком состав земной коры был близок к граниту.

Следующую попытку определить средний состав земной коры предпринял Виктор Гольдшмидт. Он сделал предположение, что ледник, двигающийся по континентальной коре, соскребает все выходящие на поверхность породы, смешивает их. В результате породы, отлагающиеся в результате ледниковой эрозии, отражают состав средней континентальной коры. Гольдшмидт проанализировал состав ленточных глин, отлагавшихся в Балтийском море во время последнего оледенения. Их состав оказался удивительно близок к среднему составу, полученному Кларком. Совпадение оценок, полученных столь разными методами, стало сильным подтверждением геохимических методов.

Впоследствии определением состава континентальной коры занимались многие исследователи. Широкое научное признание получили оценки Виноградова, Ведеполя, Ронова и Ярошевского.

Некоторые новые попытки определения состава континентальной коры строятся на разделении её на части, сформированные в различных геодинамических обстановках.
Ма́нтия — часть Земли (геосфера), расположенная непосредственно под корой и выше ядра. В мантии находится большая часть вещества Земли. Мантия есть и на других планетах. Земная мантия находится в диапазоне от 30 до 2900 км от земной коры.

Границей между корой и мантией служит граница Мохоровичича или, сокращённо, Мохо. На ней происходит резкое увеличение сейсмических скоростей — от 7 до 8—8,2 км/с. Находится эта граница на глубине от 7 (под океанами) до 70 километров (под складчатыми поясами). Мантия Земли подразделяется на верхнюю мантию и нижнюю мантию. Границей между этими геосферами служит слой Голицына, располагающийся на глубине около 670 км.

В начале XX века активно обсуждалась природа границы Мохоровичича. Некоторые исследователи предполагали, что там происходит метаморфическая реакция, в результате которой образуются породы с высокой плотностью. В качестве такой реакции предлагалась реакция эклогитизации, в результате которой породы базальтового состава превращаются в эклогит, и их плотность увеличивается на 30 %. Другие учёные объясняли резкое увеличение скоростей сейсмических волн изменением состава пород — от относительно лёгких коровых кислых и основных к плотным мантийным ультраосновным породам. Это точка зрения сейчас является общепризнанной.

Отличие состава земной коры и мантии — следствие их происхождения: исходно однородная Земля в результате частичного плавления разделилась на легкоплавкую и лёгкую часть — кору и плотную и тугоплавкую мантию.
Мантия сложена главным образом ультраосновными породами.

Ультраосновные горные породы — силикатные горные породы с содержанием SiO2 менее 45 %. В большинстве случаев содержат много MgO. Среди ультраосновных пород по минеральному составу выделяются дуниты и оливиниты (в которых вместо хромита присутствует магнетит), перидотиты и пироксениты. Эффузивные разновидности ультраосновынх пород весьма редки. К ним относятся пикриты, меймечиты, кимберлиты и лампроиты.
Астеносфера — (от др.-греч. asthees — слабый и др.-греч. ???ῖ??) верхний пластичный слой верхней мантии Земли называемый также слой Гутенберга. Астеносфера выделяется по понижению скоростей сейсмических волн. Выше астеносферы залегает литосфера — твёрдая оболочка Земли. Граница между литосферой и астеносферой может лежать на глубине от 4 (под рифтами) до 200 (под кратонами) км. Астеносфера обладает вязкостью ~3Ч1020 Пуаз.
Литосферная плита — это крупный стабильный участок земной коры, часть литосферы. Согласно теории тектоники плит, литосферные плиты ограничены зонами сейсмической, вулканической и тектонической активности — границами плиты. Границы плит бывают трёх типов: дивергентные, конвергентные и трансформные.

Из геометрических соображений понятно, что в одной точке могут сходиться только три плиты. Конфигурация, в которой в одной точке сходятся четыре или более плит, неустойчива, и быстро разрушается со временем.

Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины ядра[1]. С другой стороны, разделение земной коры на плиты не однозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания плит меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.

Более 90% поверхности Земли покрыто 14-ю крупнейшими литосферными плитами:

  1. Австралийская плита

  2. Антарктическая плита

  3. Аравийский субконтинент

  4. Африканская плита

  5. Евразийская плита

  6. Индостанская плита

  7. Плита Кокос

  8. Плита Наска

  9. Тихоокеанская плита

  10. Плита Скотия

  11. Северо-Американская плита

  12. Сомалийская плита

  13. Южно-Американская плита

  14. Филиппинская плита


Почвообразующие горные породы разрушаются в процессе выветривания до частиц различного размера:

больше 1мм – скелет почвы;

от 1 мм до 0,01 мм – песок;

от 0,01 до 0,001мм – пыль;

от 0,001 до 0,0001 – глина;

менее 0,0001 – коллоиды.

Оптимальный механический состав почво-грунта это содержание частиц 3 и 4 группы от 30 до 75%

На поверхности земной коры почвообразющие минералы горных пород разрушаются и образуется почва.

Почва (ГОСТ РФ) – это самостоятельное органо-минеральное природное тело, представленное минеральными и органическими твердыми частицами, почвенным раствором и почвенным воздухом, образовавшаяся в процессе химических, физических, биологических и антропогенных воздействий, имеющая специфические генетико-морфологические признаки и свойства, обуславливающие для роста и развития растений соответствующие условия.

Почва (почвоведчесткое) – это многофазная полидисперсная система с соотношением объемов фаз Т:Ж:Г как равно 2:1:1 или в процентах 50%:25%:25%.

Рассмотрим каждую фазу почвы:

1) Твердая фаза почвы представлена минеральными и органическими частицами. Минеральные частицы почвы представляют собой разрушенные до частиц различного размера почвообразующие горные породы (выше).

Органические частицы почвы называются гумусом. Гумус - это органические вещества и частицы в почве, состоящие из:

А) отмерших, но еще не разложившихся растительных остатков и животных останков (не утративших морфологического строения растениий растительных остатков и анатомического строения животных останков);

Б) неспецифических для почвы органических веществ специфичных для живых организмов (белки, жиры, углеводы) – их содержится 20% от общей массы гумуса;

В) специфических для почвы органических веществ, например гумусовых кислот. Гумусовые кислоты – это высокомолекулярные азотсодержащие оксикислоты с цикличными ядрами.

Гумус накапливается в верхнем слое почвы и достигает в высоту от 1 см (в арктических малоплодородных почвах) до 1 м (в области курских черноземов). В Оренбургской области гумусовый слой составляет от 40 до 60 см.

В верхнем слое почв гумуса накапливается определенное количество, в связи с которым выделяют три типа почв:

А) гумуса от 0 до 3% к общей массе почв – малоплодородные почвы;

Б) гумуса от 3 до 6% - среднеплодородные почвы;

В) гумуса от 6 и выше (в природе больше 9% не накапливается).
2) Жидкая фаза почвы называется почвенным раствором и состоит из:

а) воды

б) растворенных в воде катионов. Н+, Na+, K+, Ca2+, Mg2+, NH4+.

в) растворенные в воде анионов Cl-, SO42-, S033-, PO43-, NO3-,NO2-,CO32-, HCO3-
3) Газообразная фаза называется почвенным воздухом и состоит из следующих компонентов:

а) азота – содержание примерно как в атмосфере (75%);

б) кислорода – 15%;

в) углекислого газа СО2 - содержаие в 100 раз больше чем в атмосфере – 2-3%;

г) газов – продуктов химического и биологического разложения органических веществ, например метана, сероводорода, придающих почве специфический запах – 7-8%.
В зависимости от воздействия различных почвообразующих факторов (почвообразующая материнская порода, влагообеспеченность, воздухообеспеченность, температура, произрастающий тип растительности, антропогенный фактор) на планете сформировались различные типы почв, которые расположены горизонтально друг относительно друга (по широтам) от полюса к экватору и распределение которых подчинено закону географической зональности Докучаева:

- арктические почвы – светло-серые;

- серые лесные почвы – хвойные леса;

- темно-серые лесные почвы – лиственные;

- черноземные почвы – степи;

- каштановые почвы (черно-коричневые или коричневые) – сухие степи;

- красноземы – тропические влажные леса;

- желтоземы – цитрусовые растения

- солончаки с хлоридным (Cl-), сульфатным (SO42-) и сульфитным (SO32-) засолением с произрастанием небольшого количества растительности;

- солонцы с специфическим натриевым (Na) засолением с отрицательными физико-механическими свойствами (липкостью, набуханием при впитывании влаги и глыбообразованием при засыхании) и с полным отсутствием растительности.

Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации