Шпаргалки по предмету Современное проектирование оснований и фундаментов - файл n1.doc

Шпаргалки по предмету Современное проектирование оснований и фундаментов
скачать (2822 kb.)
Доступные файлы (1):
n1.doc2822kb.21.10.2012 21:59скачать

n1.doc

  1   2   3   4   5   6
1.Основные понятия и определения в фундаментостроении - грунт, основание, фундамент и его элементы.

Основание - напластование грунтов воспринимающее давление сооружения.

Грунт (нем. grund — основа, почва) — любые горные породы, почвы, осадки, техногенные (антропогенные) образования, представляющие собой многокомпонентные, динамичные системы, являющиеся компонентами геологической среды и объектом инженерно-хозяйственной деятельности человека

Фунда́мент (лат. fundamentum) — несущая конструкция, часть здания, которая воспринимает все нагрузки от вышележащих конструкций и передает его на основание. Как правило, изготавливаются из бетона, камня или дерева.

Основание строения - это ограниченные по глубине и простиранию массивы грунтов, на которых возводят здания и сооружения. От собственного веса, приложенных нагрузок и других воздействий они претерпевают вертикальные и горизонтальные перемещения.

Ле́нточный фундамент - представляет собой замкнутый контур (ленту) – полосу из железобетона, укладываемую под всеми несущими стенами здания и распределяющую вес здания по всему своему периметру.

Ростверк (нем. Rostwerk, от Rost — решётка и Werk — строение) — верхняя часть свайного или столбчатого фундамента, распределяющая нагрузку на основание. Ростверк выполняется в виде балок или плит, объединяющих оголовки столбов (свай) и служащих опорной конструкцией для возводимых элементов сооружения.

Свая — деревянный, металлический, или железобетонный стержень, который заглубляют в землю в основании зданий, сооружений для придания прочности фундаменту.

Геотехника (англ. geotechnics) — научные методы и инженерные принципы строительной деятельности с использованием материалов земной коры, совокупность взаимосвязанных технических решений, приемов и способов возведения подземных частей зданий и сооружений, включая способы освоения подземного пространства для строительства заглубленных помещений

Задачи курса "Основания и фундаменты", разделы курса

Глубина заложения фундамента — расстояние от планировочной планировки до уровня подошвы фундамента.

подошва фундамента — поверхность фундамента, соприкасающаяся с грунтом основания;

обрез фундамента — поверхность фундамента, верхняя плоскость, на которой располагаются надземные части здания;

БАЛКА ФУНДАМЕНТНАЯ — [РАНДБАЛКА] балка, опирающаяся на столбчатый или ленточный фундамент либо на консоли колонн и воспринимающая нагрузку от стены

Осадкой фундамента называется вертикальное его перемещение вследствие деформации толщи грунта, расположенной ниже подошвы фундамента.

Искусственное основание, искусственно закрепленный грунт, который в природном состоянии не обладает достаточной несущей способностью на глубине заложения фундамента
2. Задачи курса "Основания и фундаменты", разделы курса

Учебный курс «Основания и фундаменты» предназначен для студентов специальностей «Промышленное и гражданское строительство», «Строительство железных дорог», как дневной формы обучения, так и вечерне-заочной.

В соответствии со стандартом специальности, учебными планами и типовыми программами дисциплина «Основания и фундаменты» изучается на VIII и IX семестрах и предваряется теоретической подготовкой по другим дисциплинам, входящим в цикл геотехнических наук, включающих инженерную геологию и механику грунтов.

Во время изучения дисциплины «Основания и фундаменты» студент должен освоить теоретический курс, выполнить курсовой проект, сдать экзамен по дисциплине.

Основной теоретический материал для студентов очной формы обучения излагается на лекциях, а около 20 % прорабатывается студентами самостоятельно. На практических занятиях теоретический материал закрепляется путем решения задач и выполнения контрольных работ.

В процессе курсового проектирования приобретаются навыки самостоятельного выполнения расчетов, конструирования фундаментов, проведения технико-экономических сопоставлений их вариантов.

Теоретический материал необходимо изучать в соответствии с действующей программой дисциплины «Основания и фундаменты».

Содержание дисциплины (курса) изложено в учебниках и учебных пособиях. Основная литература изучается при проработке теоретического курса, а дополнительная используется при изучении материала, отсутствующего в учебнике, при работе над курсовым проектом и в случае отсутствия основной литературы.

Курс механика грунтов, основания и фундаменты состоят из разделов:

1.Специальный курс инженерной геологии

2.Механика грунтов

3. Основания и фундаменты

Раздел курса - Основания и фундаменты

проектирования оснований и фундаментов

Фундаменты, возводимые в открытых котлованах

Свайные фундаменты

Искусственно улучшенные основания

Крепление стен и осушение котлованов. Фундаменты глубокого за­ложения

Фундаменты на структурно-неустойчивых грунтах

Фундаменты при динамических воздействиях

Усиление оснований и фундаментов и изменение условий

Выбор оптимальных решений при проектировании оснований

3.Требования, необходимые при проектировании фундаментов.

4.1. Основания и фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации;

г) нагрузок, действующих на фундаменты;

д) окружающей застройки и влияния на нее вновь строящихся сооружений;

е) экологических требований (раздел 15);

ж) технико-экономического сравнения возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов и других подземных конструкций.

4.2. При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.3. Работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в Приложении Б.

4.4. При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I - повышенный, II - нормальный, III - пониженный.

4.5. Инженерные изыскания для строительства, проектирование оснований и фундаментов и их устройство должны выполняться организациями, имеющими лицензии на эти виды работ.

4.6. Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Наименование грунтов оснований в описаниях результатов изысканий и в проектной документации следует принимать по ГОСТ 25100.

4.7. Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа основания, фундаментов и подземных сооружений и проведения их расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических условий площадки строительства и свойств грунтов, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование без соответствующего инженерно-геологического, а также инженерно-экологического обоснований или при их недостаточности не допускается.

Примечание. При строительстве в условиях существующей застройки инженерные изыскания следует предусматривать не только для вновь строящихся сооружений, но и для окружающей застройки, попадающей в зону их влияния.

 4.8. Конструктивное решение проектируемого сооружения и условия последующей его эксплуатации необходимы для выбора типа фундамента, учета влияния конструкций на работу основания, а также на окружающую застройку, для уточнения требований к допускаемым деформациям и т.д.

4.9. В проектах оснований и фундаментов сооружений необходимо предусматривать проведение натурных наблюдений (мониторинг). Состав, объем и методы мониторинга устанавливают в зависимости от уровня ответственности сооружений и сложности инженерно-геологических условий (см. раздел 14).

Натурные наблюдения должны также предусматриваться в случае применения новых или недостаточно изученных конструкций сооружений или их фундаментов, а также если в задании на проектирование имеются специальные требования по проведению натурных измерений.

4.10. При проектировании и возведении фундаментов и подземных сооружений из монолитного, сборного бетона или железобетона, каменной или кирпичной кладки наряду с требованиями настоящих правил следует руководствоваться СНиП 2.03.11, СНиП 3.03.01, СНиП 3.04.01.

4.11. При возведении нового объекта на застроенной территории необходимо учитывать его воздействие на существующие сооружения окружающей застройки с целью предотвращения их недопустимых дополнительных деформаций.

Зону влияния проектируемого сооружения и дополнительные осадки существующих сооружений определяют расчетом (подраздел 5.5).

Предельные значения дополнительных деформаций оснований существующих сооружений должны устанавливаться на основе результатов обследований этих сооружений с учетом их конструктивных особенностей и категории состояния конструкций (Приложение В).

4.12. При проектировании необходимо учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и экологических условиях. Для этого необходимо иметь данные об инженерно-геологических условиях этого района, о конструкциях сооружений, нагрузках, типах и размерах фундаментов, давлениях на грунты основания и о наблюдавшихся деформациях сооружений. Необходимо также выявлять данные о производственных возможностях строительной организации, ее парке оборудования, ожидаемых климатических условиях на весь период строительства. Указанные данные могут оказаться решающими при выборе типов фундаментов (например, на естественном основании или свайном), глубины их заложения, метода подготовки основания и пр.

Данные о климатических условиях района строительства должны приниматься в соответствии со СНиП 23-01.

4.13. При проектировании и устройстве оснований и фундаментов сооружений следует соблюдать требования нормативных документов по организации строительного производства, геодезическим работам, технике безопасности, правилам пожарной безопасности при производстве строительно-монтажных работ.
4.Инженерно-геологические изыскания для целей фундаментостроения. Методы изыскания, объем.

В результате развивавшихся ранее эндогенных и экзоген­ных процессов каждая площадка имеет свои специфические ин­женерно-геологические условия, являющиеся частью природных условий, которые должны учитываться при проектировании и строительстве сооружений. Для выявления таких специфических условий и проводятся инженерно-геологические изыскания. Та­ким образом, назначением инженерно-геологических изысканий является изучение природных инженерно-геологических и гидро­геологических условий территории строительства и составление прогноза возможных изменений их во время строительства и в процессе эксплуатации сооружений. При этом должны быть вы­явлены пути максимального сохранения окружающей среды.

Изыскания для выбора площадки строительства

При проектировании новых предприятий, поселков, районов городов иногда возможен выбор места площадки строи­тельства. На стадии изысканий производится инженер­но-геологическая съемка, которая должна характеризовать район строительства и выявить отдельные площади с худшими и лучшими инженерно-геологическими условиями с позиции строительства, как зданий, так и подземных коммуникаций, до­рог, а также охраны окружающей среды.

Инженерно-геологической съемке предшествует изучение ли­тературных источников и фондовых (архивных) материалов. При этом выявляются инженерно-геологические и гидрогеологи­ческие условия, наличие геодинамических процессов, а также состав и свойства грунтов. С учетом собранных материалов про­изводится рекогносцировка, при которой оцениваются полнота собранного материала, возможные геодинамические процессы на площадках строительства, в т. ч. при изменении условий при за­стройке территории, а также сложности инженерно-геологиче­ских условий и другие факторы, влияющие на производство съемки или разведки.

Инженерно-геологическая съемка

Это основной метод площадного изучения инженерно-геологических условий территории, подлежащей застройке, на ранней стадии проектирования. В процессе съемки составляются инженерно-геологические карты, колонки выработки и по образ­цам грунта оцениваются его строительные качества. По собран­ному материалу производится инженерно-геологическое райони­рование, т. е. членение территории на участки или зоны с отно­сительно однородными инженерно-геологическими условиями

Для инженерно-геологического районирования в зависимости от масштаба карты устанавливается число точек проходки вы­работок на 1 км2 и расстояния между этими точками в зависи­мости от категории сложности инженерно-геологических условий. Обычно для промышленного и гражданского строи­тельства расстояния между точками наблюдений (чаще всего буровыми скважинами) принимаются от 100 до 300 м. Глубина бурения зависит от намеченных к возведению сооружений и мощности четвертичных отложений, которые желательно пол­ностью проходить по крайней мере частью скважин.

Инженерно-геологическая разведка

Эта работа предполагает определение необходимых ин­женерно-геологических характеристик грунтов в зоне воздейст­вия сооружения на грунты основания: условия залегания по­род; гидрогеологические условия; геодинамические процессы; физико-механические свойства грунтов; прогноз влияния за­стройки территории на изменение инженерно-геологических ус­ловий.

Выработки в пределах пятна застройки располагаются в за­висимости от сложности инженерно-геологических условий на расстояниях друг от друга по контуру объектов и пятну застрой­ки от 20 до 100 м. Глубина бурения (обычно от 4 до 30 м) наз­начается в зависимости от нагрузок, передаваемых сооружением на фундамент.

Инженерно-геологические исследования в период строительства и эксплуатации

При строительстве фундаментов сооружений обычно производят инженерно-геологическое освидетельствование дна кот­лована. Проверяют, в какой степени грунты, залегающие на отметке подошвы фундаментов, соответствуют данным, установ­ленным во время инженерно-геологической разведки. При несо­ответствии фактических инженерно-геологических условий дан­ным разведки производят дополнительные изыскания и иногда в проект фундаментов вносят коррективы.
5. Оценка материалов инженерно-геологических изысканий и их влияние на выбор конструкции фундаментов и метод производства работ.

В отчете, прежде всего, приводятся техническое задание и программа работ, на основании которых выполняется инже­нерно-геологическая съемка или разведка. Задание и програм­ма составляются в проектной организации. В них дается под­робная характеристика объекта строительства, указываются размещение его в плане и предполагаемые нагрузки на фун­даменты, отмечается возможность устройства свайных фундаментов. Задание на разведку под отдельными сооружениями составляется по имеющимся материалам инженерногеологической съемки, а на инженерно-геологическую съемку — на основании имеющихся литературных и фондовых материалов инже­нерно-геодезической съемки и опыта строительства в данном районе. В отчете подробно освещается геоморфология (рельеф) района или участка, где проводилась инженерно-геологическая съемка или разведка, уделяется внимание геодинамическим про­цессам, которые могут развиваться в рассматриваемом районе, в т. ч. после изменения условий окружающей среды вследствие застройки территорий.

Основную часть отчета занимает подробное освещение напластования грунтов, рассматриваемых сверху вниз, и их физи­ко-механических свойств. При этом обращается внимание на возможные изменения этих свойств во время строительства от метеорологических факторов, а также под воздействием тяже­лых машин и механизмов, применяемых строителями при уст­ройстве котлованов и фундаментных работах.

В отчете приводятся нормативные и расчетные характери­стики грунтов для расчетов оснований и фундаментов по дефор­мации и прочности (устойчивости). Кроме того, в нем должны содержаться сведения о грунтах, прорезаемых фундаментами, необходимые для расчета крепления стен котлованов.

Особо должен быть отмечен режим подземных вод каждого водоносного горизонта — появление подземных вод при бурении, установившийся их уровень и прогноз наиболее высокого поло­жения уровня подземных вод в период строительства и экс­плуатации сооружения. На основании лабораторных опреде­лений устанавливается агрессивность среды грунтовых вод и грунтов по отношению к бетону и в некоторых случаях к стали.

В заключении (или выводах) отчета подводится итог анали­зу полученных материалов, и даются рекомендации по оценке грунтов как основания сооружения, по выбору типа фундаментов (на естественном основании, свайные фундаменты и др.) и прогноз изменения окружающей среды. Эти рекомендации ин­женера-геолога не являются обязательными для проектировщи­ка, однако в той или иной степени учитываются при проекти­ровании.

После выводов в отчете помещаются приложения, к которым относятся данные лабораторных и полевых испытаний грунтов в виде таблицы и графиков, план участка с горизонталями, с расположением скважин и других выработок, а также сущест­вующих сооружений, колонки по выработкам, выполненным при настоящих и предшествующих изысканиях, геолого-литологические разрезы (продольные и поперечные), В некоторых случаях даются карты срезки на заданной глубине и кровли несущего слоя, инженерно-геологического районирования, карта гидроизогипс и др.

Правильный учет материалов, содержащихся в инженерно-геологическом отчете, позволяет находить наиболее рациональ­ные решения при проектировании фундаментов и подземных частей сооружений.
6.Основные положения расчета оснований по предельным состояниям.

При проектировании расчет основания здания или сооружения производится с целью нахождения наиболее экономичного решения по выбору размеров фундаментов, удовлетворяющих двум положениям: ограничениям, накладываемым на осадки проектируемого здания или сооружения, и устойчивости основания.

Расчет оснований всех зданий и сооружений в соответствии с требованиями СНиП П-Б.1-62* [33] производится по второму предельному состоянию (по деформации), если основание сложено несколькими грунтами (породами).

По первому предельному состоянию (по несущей способности, т. е. устойчивости) расчет ведется в случаях, когда: на основание передаются горизонтальные нагрузки в основном сочетании нагрузок (подпорные стенки и др.); основания ограничены вниз идущими откосами; фундаменты работают на выдергивание; основания сложены скальными породами.

Главной задачей расчета оснований подавляющего большинства зданий и сооружений является проверка выполнения условия, согласно которому деформации, определяемые по расчету, не должны превышать предельных величин, ограниченных Для обычных типов зданий нормами. Предельные величины деформаций специальных сооружений, а также зданий с особыми несущими конструкциями назначаются исходя из обеспечения нормальных условий их эксплуатации.

Обычно придерживаются следующего порядка расчета основания по деформации:

1. Производится подсчет нагрузок, действующих на обрезы фундаментов здания или сооружения.

2. Оцениваются инженерно-геологические условия площадки строительства, устанавливаются необходимые нормативные и расчетные характеристики грунта.

3. Намечаются возможные варианты глубины заложения и типа фундаментов (сплошная плита, ленточный и т. п.).

4. Устанавливается группа фундаментов, при расчете основания которых принимается окончательное решение по выбору типа основания (естественное, искусственное), типа фундамента (отдельный, ленточный, сплошной, свайный и т. п.), глубины их заложения.

В такую группу включают наиболее нагруженные фундаменты и фундаменты, которые могут получить наибольшую неравномерность осадки (прогиб, перекос, крен).

5. Рассчитывается ширина фундамента (сначала наиболее нагруженного) с одновременным определением величины нормативного давления на грунт, при этом задаются соотношением сторон подошвы. Для III и IV классов сооружений величина нормативного давления устанавливается по табл. 14 (СНиП И-Б.1-62*).

Размеры подошвы вычисляются в зависимости от величины нормативного давления.

6. Назначаются размеры подошвы фундамента по произведенному расчету с учетом модульной системы конструкций фундаментов.

7. Производится проверка средней величины напряжений по подошве фундамента и величины краевых напряжений (при внецентренном нагружении), затем эти величины сравниваются с нормативным давлением на грунт при данной ширине фундамента.

8. Расчетом определяется осадка фундамента и сравнивается с предельно допустимым значением.

9. В тех случаях, когда найденная осадка больше предельного ее значения, изменяют размеры фундамента (глубину заложения, соотношение сторон и ширину подошвы), добиваясь выполнения условия расчета фундамента по деформации. Если такое решение оказывается нерациональным, принимают другой тип фундаментов или основания и повторно производят расчет.

10. Расчетом определяются осадка и неравномерности осадок фундаментов, при этом учитывается загружение соседних фундаментов и в некоторых случаях соседних площадей (нагрузка на пол по грунту, от подсыпки территории и т. п.).

11. Если найденные значения осадок и их неравномерности окажутся больше предельных величин, то, изменяя намеченное решение, добиваются выполнения условия расчета фундаментов по деформации (см. п. 9).

12. Расчет всех остальных фундаментов здания или сооружения производят в указанной выше последовательности, за исключением пунктов, решение по которым является общим. В некоторых случаях производят проверку устойчивости оснований (производят расчет по несущей способности).

Расчеты, выполняемые с целью не допустить исчерпания несущей способности оснований и фундаментов, называют расчетами их на прочность и устойчивость. Основания и фундаменты могут обладать достаточной несущей способностью, но под воздействием нагрузок получать значительные перемещения, недопустимые по условиям нормальной эксплуатации сооружений.
7.Основные положения СНиП РК 5.01.01-2002 по расчету естественных оснований.



8.Классификация фундаментов и оснований

Фундаменты и их основания - ответственные элементы соору­жения, от качества и надежности которых в большой степени зави­сят долговечность и безопасность его эксплуатации.

Элементы фундамента:

подошва фундамента — поверхность фундамента, соприкасающаяся с грунтом основания;

обрез фундамента — поверхность фундамента, верхняя плоскость, на которой располагаются надземные части здания;

тело фундамента.

Глубина заложения фундамента — расстояние от планировочной планировки до уровня подошвы фундамента.

Глубина заложения должна соответствовать глубине заложения прочного слоя основания.

Глубина заложения фундамента зависит

назначения здания (от нагрузки);

наличия в здании подвала;

глубины промерзания грунта. Подошва фундамента должна располагаться ниже глубины промерзания не менее 20 см;

от уровня грунтовых вод;

вида грунта основания.

Классификация фундаментов

По конструкции:

ленточные — непрерывной лентой под стенами здания;

столбчатые — ввиде отдельных опор под колонны каркасных зданий;

сплошные — массивная плита под всем зданием;

свайные — ввиде стрежней, погруженных в грунт.

По материалу:

из природного камня (бутовые);

бутобетон;

бетон;

железобетон.

По форме:

— Оптимальной формой поперечного сечения жестких фундаментов является трапеция, где обычно угол распределения давления принимают для бута и бутобетона 27—33°, бетона — 45°. Эти фундаменты с учетов потребностей расчетной ширины подошвы могут быть прямоугольными и ступенчатыми. Блоки-подушки выполняют прямоугольной или трапециевидной формы;

По способу возведения:

- сборные и монолитные;

По характеру статической работы

— Жесткие, работающие только на сжатие, и гибкие, конструкции, которых рассчита­ны на восприятие растягивающих усилий. К первому виду относят все фундаменты, кроме железобетонных. Гибкие железобетонные фундаменты способны воспринимать рас­тягивающие усилия;

По глубине заложения:

— Мелкого (до 5 м) и глубокого (более 5 м) заложения. Минимальную глубину заложения фундаментов для отапливаемых зданий принимают под наружные стены не менее глубины промерзания плюс 100—200 мм и не менее 0,7 м; под внутренние стены — не менее 0,5 м.
Основания под фундаментами бывают двух видов

— естественные к искусственные.

К - естественным относятся основая, грунты которых расположены под подошвой фундамента в их естественном залегании. Если грунгы под подошвой фундамента слабые и основанием служить не могут, то в этих случаях устраиваются искусственные основания.

- К искусственным основаниям относятся:
а) подушки (песчаные или каменные), заменяющие слабые грунты, расположенные непосредственно под подошвой фундамента и распределяющие нагрузку от веса здания на нижележащие грунты, уменьшающие таким образом единичное давление на слабый грунт;
б) искусственное уплотнение (упрочение) грунта основания путем втрамбовывания в него щебня, забивки коротких бетонных или грунтовых свай, цементации;
в)  свайные основания и опускные колодцы, передающие нагрузку от веса здания на более прочные грунты, залегающие на большой глубине от поверхности земли.
Искусственные основания чаще всего применяются в промышленном строительстве.
Требования к фундаментам

прочность;

водостойкость;

долговечность;

индустриальность;

экономичность.
9.Расчет и конструирование жестких фундаментов при центральной нагрузке.


  1. Расчет и конструирование фундаментов при внецентренной нагрузке.

Внецентренное нагружение наиболее характерно для фундаментов каркасных производственных зданий с крановыми нагрузками, подпорных стенок, высоких сооружений, воспринимающих значительные ветровые нагрузки (дымовые трубы и проч.) и т.д. Действующие на основание нагрузки всегда можно привести к сочетанию вертикальной нагрузки Nz и моментов Mx, My относительно осей х и у, как это показано на рис. 1.


Рис.1 Схема действующих нагрузок и моментов при внецентренном нагружении основания (обозначенного ABCD)

При расчете внецентренно нагруженного основания необходимо обеспечить соблюдение следующих условий:

  • среднее давление на основание р не должно превышать R – расчетного сопротивления грунта этого основания, т.е. р ? R (как и при центральном нагружении)

  • максимальное давление по краям подошвы фундамента – «максимальное краевое давление» рmax (на рис. 1 это давление у сторон ВС или CD) не должно быть превышать 1,2 R

  • максимальное давление по углам подошвы фундамента – «максимальное давление в угловой точке» рС max (на рис. 1 это давление в углах С или D) не должно быть превышать 1,5 R.

Максимальное краевое давление рmax и максимальное угловое давление рС max определяются по формулам



где Nz, Mx , My – соответственно вертикальная сила и моменты относительно осей х и у; А – площадь основания (подошвы фундамента), А = bl; Wx , Wy – соответственно моменты сопротивлений подошвы фундамента относительно осей х и у:



b, l – ширина и длина подошвы фундамента (см. рис. 1).

При проектировании внецентренно нагруженного фундамента следует по возможности располагать подошву фундамента таким образом, чтобы эксцентриситет нагрузки был минимальным. При эксцентриситете более 1/6 стороны подошвы фундамента краевые и угловые давления (рmax, рС max) определяются по формулам, несколько отличным от приведенных выше, и предполагают получение более высоких значений рmax и рС max (см. СП 50-101-2004).

11. Основные положения проектирования гибких фундаментов.

Кроме жестких широко применяются гибкие фундаменты, которые работают совместно со сжимаемым основанием и рассчитываются на прочность при изгибе с учетом деформаций основания. При отношении высоты фундаментов к их длине более 13 можно рассматривать как абсолютно жесткие, при меньшем отношении следует считать их гибкими (ленточные железобетонные фундаменты, сплошные железобетонные плиты, фундаменты под группу опор и т. д.).

В настоящее время расчет гибких фундаментов производится в основном двумя методами: 1) местных упругих деформаций, учитывающих осадки только под фундаментом здания или сооружения, 2) общих упругих деформаций, учитывающих осадки не только под загруженной площадью, но и за ее пределами. Первый метод получил широкое распространение при; устройстве фундаментов на сильносжимаемых и малой мощности сжимаемых грунтах, второй используется при наличии достаточно плотных грунтов и не слишком больших по размерам площадок. При значительных размерах фундаментов и залегании на небольшой глубине несжимаемых пород лучшие результаты дает теория упругого слоя конечной толщины (где H - мощность сжимаемого слоя, полупролет ленточного фундамента). Теория местных упругих деформаций, предложенная Винклером, базируется на положении о прямой пропорциональности между давлением (реакцией грунта основания) и местной осадкой.

Беря последовательно производные уравнение, при r = 0 определим постоянную интегрирования p.

Дополнив эти уравнения двумя уравнениями равновесия и решая полученную систему уравнений относительно, находят по зависимости реактивные давления p(). А раз распределение и значения реактивных давлений известны, находят значения my и Qy путем суммирования всех моментов и всех сил с одной стороны искомого сечения.

Реактивные давления py, поперечные силы Qy и изгибающие моменты my по М. И. Горбунову-Посадову определяют с помощью таблиц. При вычислении принят полином десятой степени, сечения рассматриваются на расстоянии 0,1 от полупролета для различных значений гибкостей полосы.
(Гибкие фундаменты обладают способностью изгибаться в одном  или обоих направлениях подошвы. Реактивные дав­ле­ния по подошве определяются, исходя из совместной работы фун­да­мен­та и основания и, зависят как от прогиба фундамента (рис.6 б), так и степени развития пластических деформаций на краях фундамента.

 



Рис. 6. Распределение реактивных давлений по подошве фундаментов

а- жесткие фундаменты; б - гибкие фундаменты

 

К гибким фундаментам относятся все ленточные железобетонные фундаменты, фундаменты из монолитного железобетона под отдельные опоры или группы опор (рис. 7 а), фундаменты из перекрестных лент (рис. 5 б), коробчатые плиты (если необходимо воспринять очень большие изгибающие моменты, возникающие в сплошных плитах, например у фундаментов высотных зданий) (рис. 7 в), круглые (рис. 7 г) или кольцевые (рис. 7 д) в плане плиты, сплошные железобетонные плиты под колонны(рис. 7 е).

         

 

                   

Рис. 7. Гибкие фундаменты:

 

а - ленточный монолитный под колонны; б - фундамент из перекрестных лент; в - коробчатый плитный; г - плоский плитный; д - многоугольный плитный; е - плитный под колонны)

Гибкие фундаменты - это фундаменты, деформации изгиба которых имеют тот же порядок, что и осадки этого же фундамента.

1 критерий:

где ∆ S – осадка фундамента (деформация основания); f – деформация изгиба фундамента.

Таким образом, при расчёте гибких фундаментов необходимо одновременно учитывать и деформации фундамента и его осадки.

При расчёте ленточных фундаментов, загруженных неравномерно сосредоточенными силами необходимо учитывать изгиб в продольном направлении.

Вследствие изгиба фундамента конечной жёсткости, давление на грунт увеличивается в местах передачи фундаменту сосредоточенных сил и уменьшается в промежутках между этими силами (см. расчётную схему).



Принципиальная расчётная схема деформирования гибкого фундамента на упругом основании.

2 критерий:

Здесь h – высота фундамента; ℓ - длина фундамента.

Единого метода расчета гибких фундаментов не существует, а используется несколько способов в зависимости от грунтовых условий и решаемой задачи.
12. Методы решения задачи о совместной работе основания и фундаментов конечной жесткости.

Методы учета совместной работы системы основание - фундамент - верхнее строение делят на три группы.

1. Комплексный совместный расчет надземного строения, фундамента и грунтового основания.

2. Расчет оснований и фундаментов как конструкций на упругом основании с учетом предварительно вычисленной жесткости сооружения.

3. Использование при проектировании оснований и фундаментов справочных данных о допустимых перемещениях фундаментов, корректирующих коэффициентов и рекомендаций, учитывающих жесткостные особенности сооружения.

Первая группа методов рассматривает сооружение, фундамент и основание как неделимое, совместно деформирующееся целое. При этом используют различные расчетные схемы или расчетные идеализации надземного строения, фундаментов и основания. Например, каркасное здание на столбчатых фундаментах может быть представлено такой расчетной схемой (рис. 2.3): надземное строение - рама; фундамент - стержень бесконечной жесткости; основание - стержень с жесткостью, эквивалентной жесткости основания. Указанные элементы расчетной схемы сопрягаются между собой жестко, создавая расчетную модель сооружения. Такие системы могут рассчитываться на заданные нагрузки и воздействия с использованием программного обеспечения САПР (систем автоматизированного проектирования). Примерами таких программных комплексов являются: разработанные в Украине – «Мираж», «Лира», "SCAD"; разработанные за рубежом – "Robot", "Ansys", "Nostran", «Nemec», «Wolf», и др.

Такие примитивные программы как «Фундамент ***» пр-ва ГПКИП «СтройЭкспертиза» даже не рассматриваются как рабочие программы. Они расчитаны на студентов ВУЗов. Они очень примитивны.

 Довольно часто для составления расчетных схем системы основание - фундамент - верхнее строение используются конечно-элементные модели. Основание в таких расчетных схемах представляется как линейно или нелинейно деформируемая среда. Указанные системы также рассчитываются с использованием программного обеспечения САПР. В последнее время в связи с интенсивным развитием вычислительной техники и программного обеспечения, в т.ч. для персональных ЭВМ, использование для расчета систем основание - фундамент - верхнее строение методов первой группы стало традиционным.

Вторая группа методов предполагает интегральную оценку жесткости надфундаментных конструкций, в результате чего расчет системы основание - фундамент - верхнее строение сводится к расчету фундамента обобщенной жесткости на деформируемом основании. В общем случае обобщенная жесткость сооружения вычисляется как величина внутреннего усилия, приводящая к единичной деформации в сечении. Обычно для определения обобщенной жесткости сооружения используют следующий прием.

По оси сооружения в плоскости изгиба выделяют два вертикальных сечения, отстоящих друг от друга на расстоянии d. Для рамы каркаса величина d является шагом колонн. Для стены бескаркасного здания (рис. 2.4) величина d является расстоянием между осями смежных простенков и т.д. В сечениях устанавливают заделки (связи, препятствующие угловым и линейным перемещениям). Одно из сечений смещают по направлению рассматриваемого перемещения на единицу (перемещают закрепление соответствующей связи). Вычисляют реакцию в заделке по направлению рассматриваемого перемещения, значение которой пропорционально соответствующей обобщенной жесткости сечения.

13 Сущность работы свай и свайных фундаментов.

  1   2   3   4   5   6


Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации