Реферат Системный анализ и менеджмент энергетического комплекса - файл n1.doc

Реферат Системный анализ и менеджмент энергетического комплекса
скачать (82.5 kb.)
Доступные файлы (1):
n1.doc83kb.03.11.2012 09:55скачать

n1.doc

Министерство образования и науки Украины

РЕФЕРАТ
на тему:
"Системный анализ и менеджмент энергетического комплекса"


Мариуполь, 2011
СОДЕРЖАНИЕ
ВВЕДЕНИЕ

Понятие системного анализа

Развитие системных исследований в энергетике

Основные свойства систем энергетики

Менеджмент энергетического комплекса

Организационная структура тепловых электростанций

Организационная структура энергетического хозяйства

предприятий и организаций

ВВЕДЕНИЕ
В самом общем и широком смысле слова под системным исследованием предметов и явлений окружающего нас мира понимают такой

метод, при котором они рассматриваются как части или элементы определенного целостного образования. Эти части или элементы, взаимодействуя друг с другом, определяют новые, целостные свойства системы, которые отсутствуют у отдельных ее элементов. С таким пониманием системы мы постоянно встречаемся в научной литературе. Однако оно применимо лишь для характеристики систем, состоящих из однородных частей и имеющих вполне определенную структуру. Тем не менее, на практике нередко к системам относят совокупности разнородных объектов, объединенных в одно целое для достижения определенной цели.

Главное, что определяет систему, – это взаимосвязь и взаимодействие частей в рамках целого. Если такое взаимодействие существует, то допустимо говорить о системе, хотя степень взаимодействия ее частей может быть различной. Следует также обратить внимание на то, что каждый отдельный объект, предмет или явление можно рассматривать как определенную целостность, состоящую из частей, и исследовать как систему.

Понятие системы, как и системный метод в целом, формировалось постепенно, по мере того как наука и практика овладевали разными типами, видами и формами целостных объединений предметов и явлений.

Системный подход – метод научного познания, в основе которого лежит рассмотрение объектов, выявление многообразных связей и сведения в единую картину представлений о явлениях, объектах, предметах. Принцип системного анализа находит применение в современном естествознании, физике, информатике, биологии, технике, экологии, управлении и т.д.
ПОНЯТИЕ СИСТЕМНОГО АНАЛИЗА
Системный анализ - это совокупность определенных научных методов и практических приемов решения разнообразных проблем, возникающих во всех сферах целенаправленной деятельности общества, на основе системного подхода и представления объекта исследования в виде системы. Характерным для системного анализа является то, что поиск лучшего решения проблемы начинается с определения и упорядочения целей деятельности системы, при функционировании которой возникла данная проблема. При этом устанавливается соответствие между этими целями, возможными путями решения возникшей проблемы и потребными для этого ресурсами.

Целью системного анализа является полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

Системный анализ предназначен для решения в первую очередь слабоструктуризованных проблем, т.е. проблем, состав элементов и взаимосвязей которых установлен только частично, задач, возникающих, как правило, в ситуациях, характеризуемых наличием фактора неопределенности и содержащих неформализуемые элементы, непереводимые на язык математики.

Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учетом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение.

Системный анализ - это научный, всесторонний подход к принятию решений. Вся проблема изучается в целом, определяются цели развития объекта управления и различные пути их реализации в свете возможных последствий. При этом возникает необходимость согласования работы различных частей объекта управления, отдельных исполнителей, с тем чтобы направить их на достижение общей цели.

Никакая наука не рождается в один день, а появляется в результате совпадения всевозрастающего интереса к определенному классу задач и уровня развития научных принципов, методов и средств, с помощью которых оказывается возможным решать эти задачи. Системный анализ не является исключением. Его исторические корни так же глубоки, как и корни цивилизации. Еще первобытный человек, выбирая себе место для постройки жилища, подсознательно мыслил системно. Но как научная дисциплина системный анализ оформился во время Второй мировой войны, вначале применительно к военным задачам, а уже после войны - к задачам различных сфер гражданской деятельности, где он стал эффективным средством решения широкого круга практических задач.

Именно в это время общие основы системного анализа созрели настолько, что их стали оформлять в виде самостоятельной отрасли знаний. Можно с полным основанием сказать, что разработка методов системного анализа в значительной степени способствовала тому, что управление во всех сферах человеческой деятельности поднялось от стадии ремесла или чистого искусства, которое в преобладающей степени зависело от способности отдельных людей и накопленного ими опыта, до стадии науки.

Возникновение и развитие системных представлений. Признаки системности

В наше время происходит невиданный прогресс знания, который, с одной стороны, привел к открытию и накоплению множества новых фактов, сведений из различных областей жизни, и тем самым поставил человечество перед необходимостью их систематизации, отыскания общего в частном, постоянного в изменяющемся. С другой стороны, рост знания порождает трудности его освоения, обнаруживает неэффективность ряда методов используемых в науке и практике. Кроме того, проникновение в глубины Вселенной и субатомный мир, качественно отличный от мира соизмеримого с уже устоявшимися понятиями и представлениями, вызвало в сознании отдельных ученых сомнение во всеобщей фундаментальности законов существования и развития материи. Наконец, сам процесс познания, все более приобретающий форму преобразующей деятельности, обостряет вопрос о роли человека как субъекта в развитии природы, о сущности взаимодействия человека и природы, и в связи с этим, о выработке нового понимания законов развития природы и их действия. Дело в том, что преобразующая деятельность человека изменяет условия развития естественных систем, и тем самым способствует возникновению новых законов, тенденций движения. В ряду исследований в области методологии особое место занимает системный подход и в целом “системное движение”. Само системное движение дифференцировалось, разделялось на различные направления: общая теория систем, системный подход, системный анализ, философское осмысление системности мира.

Под термином система понимается объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность взаимосвязанных разнородных элементов работающих как единое целое. Системы значительно отличаются между собой как по составу, так и по главным целям. Это целое приобретает некоторое свойство, отсутствующее у элементов в отдельности.

Признаки системности описываются тремя принципами.

Признаки системности:

· Внешней целостности - обособленность или относительная обособленность системы в окружающем мире;

· Внутренней целостности - свойства системы зависят от свойств её элементов и взаимосвязей между ними . Нарушение этих взаимосвязей может привести к тому , что система не сможет выполнять свои функции;

· Иерархичности - системе можно выделить различные подсистемы, с другой стороны сама система тоже является подсистемой другой более крупной подсистемы.

РАЗВИТИЕ СИСТЕМНЫХ ИССЛЕДОВАНИЙ В ЭНЕРГЕТИКЕ
В настоящее время топливно-энергетический комплекс (ТЭК) играет особую роль в развитии экономики современной России, который представляет собой совокупность процессов добычи, преобразования, распределения, потребления и сбережения энергии от источников получения природных энергетических ресурсов до использования энергии и оказывает особое влияние на обеспечение жизнедеятельности человеческого общества.
В перспективе роль ТЭК в экономике современной России будет возрастать, что предопределяется усилением роли энергетического фактора в процессе взаимодействия национальных экономик стран мира и регионов в условиях глобализации рынков. Энергетика, являясь одним из важнейших элементом инфраструктуры регионального рынка, представляет собой большую открытую систему, на функционирование которой в рыночной среде оказывают сильное влияние потребители электроэнергии и тепла.
Развитие энергетики неразрывно связано с развитием теории и методологии системного анализа и оптимизацией потоковых процессов.
В связи с формированием системы рыночных отношений в области энергетики системные исследования целесообразно развивать с учетом общенаучной системной методологии, к которой автор, прежде всего, относит логистику. Ее необходимо рассматривать как отрасль системных исследований, включающих совокупность методологии, теории, методов и способов оптимизации всех видов потоков (информационных, энергетических и др.), сопровождающих экономические, социальные и коммуникационные процессы в сфере создания, воспроизводства и потребления товаров и услуг.
Система энергетики есть множество компонентов, объединённых единством цели - создание комфортных условий жизнедеятельности человека посредством преобразования видов энергии. Данное определение не претендует на полное точное определение систем энергетики.

Другое определение: система энергетики - это производственная система, созданная человеком, тесно связанная с окружающей средой от получения первичной энергии до преобразования.

Образование и развитие систем энергетики, взаимосвязанной со всеми другими производственными, экономическими, социальными, биологическими системами, есть объективное формирование и не зависит от политической (правящей) системы, а результат экономического и технического развития общества. Разумеется, политическая властная структура влияет на темпы развития, но не в глобальном общем направлении её развития.

Общую, большую систему энергетики для возможности её анализа и синтеза, подразделяют на ряд функциональных систем энергетики-компоненты системы:

топливодобывающие, нефти - и газоснабжающие, электроэнергетические, ядерно-энергетические и др. Основными целями исследования и управления системой энергетики независимо от времени являются:

1).определение оптимальных темпов и пропорций в развитии всех компонентов системы энергетики;

2).своевременное выявление элементов новой техники, которые могут

обеспечить решение основных задач научно-технического прогресса, создание условий для современной разработки и освоения такой техники;

3).обеспечение наиболее эффективного использования основных материальных, энергетических и трудовых ресурсов.

При этом важным фактором при управлении системой энергетики является время - чем больше время перспективного анализа, тем выше неопределённость принятия решения. Поэтому перспективные исследования необходимо разбивать по времени на ряд этапов. В конце каждого этапа проводится анализ прошедших периодов, выявляются основные тенденции в развитии энергетики и с учётом этого намечаются ближние и дальние корректирующие решения. В кризисные и переходные периоды в экономике и политике следует такой анализ проводить как можно чаще (ежегодно).

Энергетика в настоящее время превратилась в сложную совокупность

процессов от получения природных энергоресурсов и их преобразования до конечных видов энергии в многофункциональном хозяйстве страны. Энергетика уже не обособлена границами одной страны. Процессы, происходящие в отдельной стране, влияют на развитие энергетики в других странах и регионах мира.

Примеров последнего можно привести много. Это и экспорт энергоресурсов, межрегиональные передачи электроэнергии, это и явления энергетических кризисов и аварий на АЭС, перенос выбросов в атмосферу других стран от ТЭС.
ОСНОВНЫЕ СВОЙСТВА СИСТЕМ ЭНЕРГЕТИКИ
Система энергетики обладает общими и индивидуальными свойствами, отражающими особенности развития энергетики, как комплекса взаимосвязанных систем – электроэнергетических, топливодобывающих, транспортных и др.

Знание общих свойств значительно помогает при решении конкретных задач на этапах проектирования или эксплуатации.

Можно выделить четыре основных группы свойств систем энергетики: структурные, развития, функционирования и управляемости. Группа структурных свойств системы отражает единство основных связей и входящих в неё элементов (подсистем), т.е. иерархичность систем. Структурные свойства раскрывают сущность взаимосвязей разных иерархических уровней и включают:
1.Целостность отдельных систем и подсистем, входящих в данную структуру, отражает степень автономности и индивидуальности систем.
2.Уровень централизации управления – отражает внешние связи системы с другими системами различного иерархического уровня.
3.Сложность структуры определяется объёмом и значимостью внешних и внутренних связей системы.
Группа свойств, характеризующих развитие системы, включает: стабильность, динамичность, инерционность и дискретность.

Стабильность – способность системы в развитии сохранять свою структуру и экономичность. Большие системы, к которым относятся системы энергетики, в своём развитии изменяют связи, элементы в относительно малом объёме. Так, ввод новых мощностей или строительство дополнительной ЛЭП незначительно перестраивает внутрисистемные связи, т.е. то, что уже действует, продолжает работать.

Свойство динамичности определяется в развитии системы как влияние настоящего состояния на будущее, т.е. во многом предопределяется развитие системы в будущем принятием текущих решений.

Свойство инерционности отражает способность системы противостоять внешним и внутренним воздействиям. Количественно инерционность системы можно измерить периодом времени от принятия решения до его реализации, изменяющие развитие системы.

Дискретность отражает скачкообразные изменения в структуре и связях при развитии системы. Она определяется строительством и пуском новых электростанций, ЛЭП и других объектов, имеющих дискретную мощность.

Например, производительность ТЭЦ по пару изменяется дискретно в

соответствии с числом работающих котлов. Группа свойств, характеризующих функционирование системы, определяется комплексными свойствами экономичности и надёжности.
Экономичность – свойство системы осуществлять свои функции с минимумом овеществлённого и живого затрат при наличии определённых ограничений. Это свойство отнесено к группе функционирования, так как оно в большей мере проявляется в период эксплуатации.
Надёжность – комплексное свойство системы выполнять заданные функции при заданных условиях и ограничениях функционирования. Более подробно о комплексе свойств надёжности рассмотрено в специальном разделе.
В группу свойств, характеризующих управляемость системы, включены пять основных свойств: неполнота информации; адаптация; недостаточность определённости оптимальных решений; самоорганизованность; многокритериальность.
Основное свойство неполноты информации заключается в том, что наряду с детерминированной, значительная часть информации является вероятностной и неопределённой. Детерминированная информация относится к точной или однозначной информации. Например, на какой-то ТЭЦ установлено столько-то турбин. Вероятностная информация может быть представлена в виде функции распределения одних параметров по отношению к другим. Так, наработка на отказ труб поверхностей нагрева во времени описывается нормальным законом распределения с достаточной точностью. Неопределённая информация обычно представляется в виде диапазона значений, внутри которого параметры не поддаются описанию каким-либо законом. Например, представление о росте нагрузок в перспективе через 20-40 лет можно определить только в общем приближении в довольно большом диапазоне «от» и «до». Неполнота информации большое значение имеет при управлении развитием системы и при принятии направленности развития системы на перспективу.
Свойство адаптации в общем случае характеризуется как процесс накопления и использования информации. Это свойство особенно должно учитываться и в значительной мере создаваться при планировании развития систем. Развитие систем необходимо планировать так, чтобы при изменившихся условиях система могла с малыми затратами адаптироваться к новым условиям.
Свойство недостаточности определённости оптимальных решений о

функционировании и развитии систем формируется в результате постоянного

изменения условий, внешних и внутренних. Это свойство связано со многими свойствами системы и в главном, оно отвечает положению, что принимаемое решение должно иметь некоторую область неопределённости, учитывающую неопределённость и неоднозначность имеющейся информации о системе.

Так, оптимальная температура питательной воды определяется стоимостью топлива, КПД котла, коэффициентом недовыработки электроэнергии норм верхних отборов, стоимостью ПВД и т.д. Но стоимость топлива меняется, а также условия, как снижение потребности в электроэнергии на неопределённое время, ставят задачу оптимизации температуры питательной воды в разряд неопределённости внешних условий. В этой ситуации традиционные экономические критерии не подходят.

Свойство самоорганизованности заключается в способности системы выбирать решения и реализовывать их для сохранения взаимодействия с окружающей средой. Это связано свойством не целостности системы.

Многокритериальность предусматривает свойство системы оптимально функционировать по ряду направленных (или условно зависимых) критериев.

Чаще всё оптимальное функционирование определяется экономическими критериями, а также экономичность (экономичность безопасность) выступают в качестве организаций развития системы.

Перечисленные свойства не охватывают всех свойств системы, таких как энергетика, но дают общее представление о сложности взаимосвязей как между элементами систем энергетики, так и с другими технологическими, экономическими, политическими и прочими системами. При решении задач в энергетики необходимо учитывать свойства в большей или меньшей мере в зависимости от уровня задачи.


МЕНЕДЖМЕНТ ЭНЕРГЕТИЧЕСКОГО КОМПЛЕКСА
Основная цель энергетического менеджмента - достижение энергоэффектив-ности, энергосбережение. В этом смысле энергосбережение есть часть энергети-ческого менеджмента. В то же время, энергетический менеджмент является инструментом энергосбережения, дающим теорию, методики, практические методы и средства для обеспечения энергоэффективности.
Структуру энергетического менеджмента можно рассматривать в технологи-ческом и функционально-территориальном разрезах.
Технологическая структура энергетического менеджмента двухкомпонентна (рис.1) и включает в себя «Планирование снабжения (производства) энергоресурсов (- SSP)» и «Управление энергопотреблением (спросом на энергоресурсы) (Demand Side Management - DSM)», в совокупности образующие «Согласованное планирование и управление энергоресурсами (Integrated Resourse Planning - IRP)» . Основой IRP служит «Прогнозирование энергопотребления (Load Forecasting - LF)». Указанные компоненты энергетического менеджмента взаимообусловлены, органически взаимосвязаны и направлены на достижение единой цели - энергоэффективности о результата процесса энергосбережения.
Основными функциями энергоменеджмента являются:

- взаимодействие с энергопотребителями предприятия и взаимодействие с энергоснабжающими организациями;

- обработка и предоставление информации об энергопотреблении по от-дельным структурным подразделениям (производствам, цехам, участкам);

- подготовка предложений по энергосбережению;

запуск энергосберегающих проектов и управление ими;

проведение разъяснительно-воспитательной работы со всеми работника-ми о важности и необходимости энергосбережения.
Для реализации этих функций необходимо организовать на предприятии еди-ную, распределенную по всем уровням управления, информационную систему для оперативного контроля и управления производством и потреблением энергоресурсов. Информация из этой системы должна поступать в блок информационного обеспечения. Она позволит оперативно выявлять и реагировать на факты необоснованного перерасхода энергоресурсов и проводить анализ причин возникновения таких ситуаций. Такая система должна быть комплексной и направленной на устранение выявленных недостатков.
Работа по управлению энергосбережением неотделима от общего управления организацией. Поэтому служба энергосбережения (отдел, управление) предприятия должна тесно взаимодействовать с руководством предприятия, которое:

- управляет большинством ресурсов;

- вырабатывает стратегию предприятия;

- определяет приоритетность проектов;

- организует взаимное общение.
Исходя из этого, близость служб энергетического менеджмента с руководством предприятия является основой успешной работы по проведению энергосбере-гающих мероприятий на предприятии.
В странах Европейского Союза, в США, Японии уже сложилась кадровая структура энергетического менеджмента, определились функциональные обязанности и права при достаточно высоком уровне энергоменеджмента и его специфике в каждой стране и организации. Анализ опыта этих стран показывает, что без государственных политики и программ энергосбережения, без создания системы энергетического менеджмента невозможно преодолеть экономический кризис и достичь стабильного социального и экономического развития. Активно развивается энергетический менеджмент в нашей республике и других странах СНГ. Активная организационная и практическая работа по реализации принятых концепций и программ, внедрение энергоэффективных технологий вывели Республику Беларусь на передовые позиции в области энергосбережения среди других стран СНГ. Причем энергоэффективные технологии понимаются в широком смысле - как практический инструментарий процесса управления эффективным использованием энергии, т. с. совокупность методик и средств в области организации, технологии (технические решения конструкций и производственных процессов) и поведения.
Энергетический менеджмент, являясь частью общего менеджмента, повторяет его иерархические структуры.
Следует различать энергоменеджмент макроуровня: на международном уровне, в стране, области, городе, в отрасли экономики и т. п. - и энергоменеджмент микроуровня; внутри предприятия, учреждения, фирмы, в семье.

Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации