Контрольная работа - Фиктивные переменные - файл n1.doc

Контрольная работа - Фиктивные переменные
скачать (120 kb.)
Доступные файлы (1):
n1.doc120kb.19.11.2012 16:28скачать

n1.doc



СОДЕРЖАНИЕ

Введение 3

1 Содержание фиктивных переменных, их применение

1.1 Понятие «фиктивная переменная» 5

1.1.2 Использование фиктивных переменных в моделях

с временными рядами 6
1.1.3 Модели с фиктивными независимыми переменными 7

1.2 Использование фиктивных переменных 13


Заключение 16

Список литературы 19


ВВЕДЕНИЕ


Основная задача эконометрики состоит в построении моделей специфического типа (эконометрических моделей), описывающих взаимообусловленное развитие социально-экономических процессов, на основе информации, отражающей распределение их уровней во времени или (и) в пространстве однородных объектов. Эти модели используются в анализе и прогнозировании общих закономерностей и конкретных количественных характеристик рассматриваемых процессов, определении управляющих воздействий. Вследствие этого в самом широком толковании эконометрию можно рассматривать как объединение ряда дисциплин – экономической теории (включая микро- и макроэкономику, социальную сферу), социально-экономической статистики и теории измерения общественных процессов, математической статистики и методов экономико-математического моделирования.

Каждая из перечисленных дисциплин играет свою роль в эконометрическом исследовании. Экономическая теория занимается вопросами разработки концепций относительно законов развития исследуемых процессов с учетом их взаимосвязей; социально-экономическая статистика и теория измерений – выражением количественных и качественных состояний этих процессов (как правило, в последовательные периоды (моменты) времени) в виде набора логически непротиворечивых и содержательных показателей; методы экономико-математического моделирования – разработкой моделей взаимосвязей между рассматриваемыми процессами, адекватно отражающими экономические концепции в рамках выбранной системы показателей; математическая статистика – собственно построением самих моделей (т. е. оценкой их параметров), проверками гипотез относительно их адекватности тенденциям процессов, значимости взаимосвязей между ними, оценками неопределенности в полученных результатах, вызванной систематическими и случайными ошибками и т. п.

При этом обычно предполагается, что систематические ошибки в результатах возникают вследствие использования неадекватной тенденциям исследуемых процессов концепции относительно их взаимосвязей, систематических ошибок измерений их уровней, неправильно выбранной спецификации модели и ряда других причин объективного и субъективного характера.

Причинами существования случайной ошибки модели, как правило, являются случайные ошибки измерения процессов, невозможность учета в модели случайных воздействий множества незначимых с точки зрения экономической теории факторов и другие подобные причины.

Таким образом, при эконометрическом исследовании имеют место две стороны проблемы обеспечения высокого качества его результатов – качественная и количественная. Качественная заключается в установлении соответствия между построенной эконометрической моделью и лежащей в ее основе концепцией, а количественная – в точности аппроксимации (подгонки) имевшихся количественных и качественных характеристик рассматриваемых процессов данными модельных расчетов.

В контрольной работе рассмотрено понятие фиктивные переменные как индикаторные переменные, отражающие качественную характеристику. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т. е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными.


СОДЕРЖАНИЕ ФИКТИВНЫХ ПЕРЕМЕННЫХ,

ИХ ПРИМЕНЕНИЕ

Понятие «фиктивная переменная»


Переменная xi называется фиктивной (несущественной) переменной функции f(x1,···,xn), если

f(x1,···,xi-1,0,xi+1,···,xn) = f(x1,···,xi-1,1,xi+1,···,xn)

для любых значений x1,···,xi-1,xi+1,···,xn.

Иначе переменная xi называется существенной.

Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т. е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными. В литературе можно встретить термины «структурные переменные» или «искусственные переменные»

Например, в результате опроса группы людей 0 может означать, что опрашиваемый — мужчина, а 1 — женщина. К фиктивным переменным иногда относят регрессор, состоящий из одних единиц (т.е. константу, свободный член), а также временной тренд.

Использование фиктивных переменных в моделях с временными рядами.
В регрессионных моделях с временными рядами используется три основных вида фиктивных переменных:

1) Переменные-индикаторы принадлежности наблюдения к определенному периоду — для моделирования скачкообразных структурных сдвигов. Границы периода (моменты “скачков”) должны быть установлены из априорных соображений. Например, 1, если наблюдение принадлежит периоду 1941-45гг. и 0 в противном случае. Это пример использования для моделирования временного структурного сдвига. Постоянный структурный сдвиг моделируется переменной равной 0 до определенного момента времени и 1 для всех наблюдений после этого момента времени.

2) Сезонные переменные — для моделирования сезонности. Сезонные переменные принимают разные значения в зависимости от того, какому месяцу или кварталу года или какому дню недели соответствует наблюдение.

3) Линейный временной тренд — для моделирования постепенных плавных структурных сдвигов. Эта фиктивная переменная показывает, какой промежуток времени прошел от некоторого “нулевого” момента времени до того момента, к которому относится данное наблюдение (координаты данного наблюдения на временной шкале). Если промежутки времени между последовательными наблюдениями одинаковы, то временной тренд можно составить из номеров наблюдений.

Временной тренд отличается от бинарных фиктивных переменных тем, что имеет смысл использовать его степени: t2 , t3 и т. д. Они помогают моделировать гладкий, но нелинейный тренд. (Бинарную переменную нет смысла возводить в степень, потому что в результате получится та же самая переменная.)

Можно также комбинировать указанные виды фиктивных переменных, создавая переменные “взаимодействия” соответствующих эффектов.

Комбинация рассмотренных фиктивных переменных позволяет моделировать еще один эффект — изменение наклона тренда с определенного момента. Помимо тренда в регрессию следует тогда ввести следующую переменную: в начале выборки до некоторого момента времени она равна 0, а вторая ее часть представляет собой временной тренд (1, 2, 3 и т. д. в случае одинаковых интервалов между наблюдениями).

Использование фиктивных переменных имеет следующие преимущества:

  1. Интервалы между наблюдениями не обязательно должны быть одинаковыми. В выборке могут быть пропущенные наблюдения.

  2. Коэффициенты при фиктивных переменных легко интерпретировать, они наглядно представляют структуру динамического процесса.

  3. Для оценивания модели не приходится выходить за рамки классического метода наименьших квадратов.
Модели с фиктивными независимыми переменными


Использование фиктивных переменных имеет следующие преимущества:

  1. Интервалы между наблюдениями не обязательно должны быть одинаковыми. В выборке могут быть пропущенные наблюдения.

  2. Коэффициенты при фиктивных переменных легко интерпретировать, они наглядно представляют структуру динамического процесса.

  3. Для оценивания модели не приходится выходить за рамки классического метода наименьших квадратов.

(Рис. 1).

На рис.1 показано, что в период (0, T1) для развития процесса была характерна тенденция (1), а в период (T1+1, T2) – тенденция (2) (например, до дефолта и после дефолта, если дефолт не повлиял на характер самой тенденции).

При этом динамические характеристики этих тенденций (темпы роста, первая производная) совпадают.

у

2





1

t

0 T1 T1+1 T2
Рис. 1. Пример различий в условиях развития процесса
Если не принимать во внимание отмеченные различия и попытаться построить единую, обобщенную модель для периода (0, T2), то, очевидно, что ее уравнение будет соответствовать пунктирной линии, проходящей между сплошными линиями, характеризующими реальные тенденции процесса в рассматриваемых периодах.

Из рис. 1, в частности, также вытекает, что, если эконометрическая модель строится только на основе информации первого периода, то ее уравнение будет иметь следующий вид:
уt=01f(,x)+ t1, (1)
а, если только по информации второго периода, то
уt=02f(,x)+ t2, (2)
Отличаются эти выражения, если не принимать во внимание возможные различия в их ошибках, только величиной свободного коэффициента, т. е. 0.

Если ввести фиктивную переменную x0i, i=1,2, со следующими свойствами:
х01= 1, в первый период;

0, во второй период;
х02= 0, в первый период;

1, во второй период;
то выражения (1) и (2) могут быть объединены в рамках одной модели следующего вида:
уt=01х0102х02f(,x)+t. (3)
Матрица исходных данных для такой модели будет иметь следующий вид:
(4)

Xit – матрица значений основных независимых переменных модели, i=1,2,..., п; t=1,2,....,Т2.

Очевидно, что в этом случае условное математическое ожидание переменной у будет иметь следующий вид:
M[y/ х11, х20, Xit]=01f(,x) для t=1,2,..., Т1;

и

M[y/ х10, х21, Xit]=02f(,x) для t= Т1+1,..., Т2;
Заметим, что для рассматриваемого случая может быть предложена и другая модификация модели (10.28), например, с одной фиктивной переменной (пусть х02), но содержащая свободный член. Ее вид определен следующим уравнением:
уt=002х02f(,x)+t, (5)
и матрица исходных данных для такой модели примет следующий вид:
(6)

Вместе с тем, несложно увидеть, что введение свободного члена в модели (3) и (4)невозможно, поскольку следствием этого является появление единичного столбца в матрице (4), что влечет за собой ее необратимость, поскольку единичный столбец представляет собой линейную комбинацию столбцов значений фиктивных переменных.

Модели типа (3) и (5) легко могут быть сформированы и на случай большего числа групп фиктивных переменных. Они могут выражать определенные временные периоды (например, с целью учета сезонности), статус объекта и т. п. В частности, в рассматриваемой в первой главе модели заболеваемости такие переменные могут выражать время года (весна, лето, осень зима), половозрастную группу населения (взрослые и дети, мужчины и женщины). В этом случае вводятся две группы переменных – временная и половозрастная (всего восемь). Обозначим эти переменные как s1, s2, s3, s4; q1, q2, q3, q4. При этом




si= 1, если наблюдения относятся к i-му времени года, i=1,2,3,4;

0, в остальных случаях;




qj= 1, если наблюдения относятся к j-й половозрастной группеj=1,2,3,4;

0, в остальных случаях;
Тогда эконометрическая модель типа (3), описывающая заболеваемость в регионе в зависимости от условий жизнедеятельности, времени года и половозрастной группы индивидуума, может быть представлена в следующем виде:

(7)

где хit – факторы жизнедеятельности.

Оставление свободного члена в модели заболеваемости, как и в модели (5), приведет к уменьшению числа ее фиктивных переменных. В этом случае выражение (7) преобразуется к виду:

(8)

При этом для первого временного сезона и первой половозрастной группы получим 0=01+01.

Заметим, что модели типа (7) и (8) корректны, если все группы населения одинаково реагируют на изменение условий жизнедеятельности и, кроме того, заболеваемость характеризуется параллельными сдвигами со сменой времени года.

В этой связи модели типа (3), (5) могут быть интерпретированы как сплайн-функции, у которых зависимая переменная у одинаково и “монотонно” реагирует на изменения “количественных” независимых переменных хi на всех рассматриваемых временных интервалах и скачкообразно меняется при смене интервала.

Вместе с тем, фиктивные переменные могут быть применены при построении сплайн-функций любой модификации. Рассмотрим следующий пример. Пусть зависимая переменная у характеризует уровень дохода, а единственная переменная х – возраст индивидуума.

Предполагается, что в различных возрастных группах доход определяется специфическими формами зависимости следующего вида:

(9)

Введем фиктивные переменные d1 и d2, такие что d1=1, если х20, и d2=1, если х30. Тогда три уравнения из выражения (9) могут быть объединены в одно, следующего вида:

(10)

Заметим, что коэффициенты наклона на рассматриваемых участках согласно выражению (10) определяются следующим образом:

(11)

а свободные члены должны удовлетворять условию равенства функции у соответствующих участков х=20 и х=30. Исходя из этого получим

(12)





Выражение (12) определяет систему линейных ограничений на коэффициенты модели (9) следующего вида:

(13)

Подставляя ограничения (12) в (10), получим рассматриваемую модель дохода как сплайн-функцию в следующем виде:

(14)

где, напомним, d1 и d2 – фиктивные переменные, принимающие значения 1 на втором и третьем возрастных интервалах соответственно, и 0 – в противном случае.

В “фиктивной” форме может быть выражена и зависимая переменная. Такая ситуация имеет место, например, при проведении социологических опросов, когда их результат может быть представлен двумя ответами “да”, “нет” (1 или 0) (предполагаемая покупка автомобиля, дачи; желание иметь ребенка в семье и т. п.), а влияющие на этот результат факторы выражаются в произвольной форме (количественные характеристики – уровень дохода, жилая площадь и т. п., качественные характеристики – уровень образования и т. д.). Тогда расчетные значения , определенные по модели при различных комбинациях значений независимых переменных хi, можно интерпретировать как оценку условий вероятности события у при фиксированных значениях хi, i=1,2,..., п.


Использование фиктивных переменных




Регрессионные модели являются достаточно гибким инструментом, позволяющим, в частности, оценивать влияние качественных признаков на изучаемую переменную. Это достигается введением в число факторов так называемых фиктивных переменных, принимающих, как правило, значения 1 или 0 в зависимости от наличия или отсутствия соответствующего признака в очередном наблюдении. С формальной точки зрения фиктивные переменные ничем не отличаются от других факторов. Наиболее сложный вопрос, возникающий при их использовании, – это правильная интерпретация получаемых оценок.

Как правило, независимые переменные в регрессионных моделях имеют «непрерывные» области изменения (национальный доход, уровень безработицы, размер зарплаты и т.п.). Однако теория не накладывает никаких ограничений на характер факторов, в частности, некоторые переменные могут принимать всего два значения или, в более общей ситуации, дискретное множество значений. Необходимость рассматривать такие переменные возникает довольно часто в тех случаях, когда требуется принимать во внимание какой-либо качественный признак. С таким примером возможно столкнуться при рассматрении модели стоимости жилой площади в Москве. В качестве такого признака рассматривалась «этажность»: необходимо было разделить первый, последний и другие этажи. Есть и другие примеры. Так при исследовании зависимости зарплаты от различных факторов может возникнуть вопрос, влияет ли на ее размер и, если да, то в какой степени, наличие у работника высшего образования. Точно также можно выяснить в какой степени имеются различия в оплате труда между мужчинами и женщинами. Для решения подобных задач в принципе можно оценивать соответствующие уравнения внутри каждой категории, а затем изучать различия между ними, но введение дискретных или группирующих переменных позволяет определить параметры модели сразу по всем категориям. Фиктивные переменные, несмотря на свою внешнюю простоту, являются весьма гибким инструментом при исследовании влияния качественных признаков.

Таким образом,

1) для исследования влияния качественных признаков в модель можно вводить бинарные (фиктивные) переменные, которые, как правило, принимают значение 1, если данный качественный признак присутствует в наблюдении, и значение 0 при его отсутствии;

2) способ включения фиктивных переменных зависит от априорной информации относительно влияния соответствующих качественных признаков на зависимую переменную и от гипотез, которые проверяются с помощью модели;

3) от способа включения фиктивной переменной зависит и интерпретация оценки коэффициента при ней.

ЗАКЛЮЧЕНИЕ


Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику.

В регрессионных моделях с временными рядами используется три основных вида фиктивных переменных:

1) Переменные-индикаторы принадлежности наблюдения к определенному периоду — для моделирования скачкообразных структурных сдвигов.

2) Сезонные переменные — для моделирования сезонности.

3) Линейный временной тренд — для моделирования постепенных плавных структурных сдвигов.

Использование фиктивных переменных имеет следующие преимущества:

  1. Интервалы между наблюдениями не обязательно должны быть одинаковыми. В выборке могут быть пропущенные наблюдения.

  2. Коэффициенты при фиктивных переменных легко интерпретировать, они наглядно представляют структуру динамического процесса.

  3. Для оценивания модели не приходится выходить за рамки классического метода наименьших квадратов.

В “фиктивной” форме может быть выражена и зависимая переменная. Такая ситуация имеет место, например, при проведении социологических опросов, когда их результат может быть представлен двумя ответами “да”, “нет” (1 или 0) (предполагаемая покупка автомобиля, дачи; желание иметь ребенка в семье и т. п.), а влияющие на этот результат факторы выражаются в произвольной форме (количественные характеристики – уровень дохода, жилая площадь и т. п., качественные характеристики – уровень образования и т. д.).

С формальной точки зрения фиктивные переменные ничем не отличаются от других факторов. Наиболее сложный вопрос, возникающий при их использовании, – это правильная интерпретация получаемых оценок.

Как правило, независимые переменные в регрессионных моделях имеют «непрерывные» области изменения (национальный доход, уровень безработицы, размер зарплаты и т.п.). Однако теория не накладывает никаких ограничений на характер факторов, в частности, некоторые переменные могут принимать всего два значения или, в более общей ситуации, дискретное множество значений. Необходимость рассматривать такие переменные возникает довольно часто в тех случаях, когда требуется принимать во внимание какой-либо качественный признак.

Для исследования влияния качественных признаков в модель можно вводить бинарные (фиктивные) переменные, которые, как правило, принимают значение 1, если данный качественный признак присутствует в наблюдении, и значение 0 при его отсутствии;

Способ включения фиктивных переменных зависит от априорной информации относительно влияния соответствующих качественных признаков на зависимую переменную и от гипотез, которые проверяются с помощью модели;

От способа включения фиктивной переменной зависит и интерпретация оценки коэффициента при ней.

СПИСОК ЛИТЕРАТУРЫ



  1. Зандер Е.В. «Эконометрика: Учебно-методический комплекс». Красноярск, 2003, 34 с.

  2. Леванова Л.Н. «Основы эконометрики», учебное пособие. Саратов, 2003.

  3. Практикум по эконометрике: Учебное пособие / Под ред. Елисеевой И.И. - М.: Финансы и статистика, 2001,2002,2003,2004. - 192с

  4. Орлов А.И., Эконометрика. Учебник. М.: Издательство "Экзамен", 2002

  5. Орлова И.В. Экономико-математические методы и модели. Выполнение расчетов в среде EXCEL: Практикум: Учебное пособие / И. В. Орлова; ВЗФЭИ. - М.: Финстатинформ, 2000. - 136с.

  6. Орлова И.В. Экономико-математическое моделирование. Практическое пособие по решению задач / И. В. Орлова; ВЗФЭИ. - М.: Вузовский учебник, 2004. - 144с.

  7. Тихомиров Н.П., Дорохина Е.Ю. «Эконометрика», 2002.

  8. Эконометрика: Учебник / Под ред. Елисеевой И.И. - М.: Финансы и статистика, 2001,2002,2003,2004 . - 344с.

  9. Эконометрика: Учебник / Под ред. И.И.Елисеевой. - 2-е изд.; перераб. и доп. - М.: Финансы и статистика, 2005. - 576с.




Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации