Бондарь В.И. Конспект лекций по курсу «Физическая химия» - файл n12.doc

Бондарь В.И. Конспект лекций по курсу «Физическая химия»
скачать (972.5 kb.)
Доступные файлы (16):
n1.doc138kb.22.04.2000 18:12скачать
n2.doc1223kb.22.04.2000 19:26скачать
n3.doc90kb.22.04.2000 19:28скачать
n4.doc101kb.22.04.2000 19:32скачать
n5.doc150kb.22.04.2000 18:17скачать
n6.doc199kb.22.04.2000 18:24скачать
n7.doc932kb.22.04.2000 18:40скачать
n8.doc336kb.22.04.2000 18:46скачать
n9.doc279kb.22.04.2000 19:09скачать
n10.doc483kb.22.04.2000 19:12скачать
n11.doc286kb.22.04.2000 19:19скачать
n12.doc265kb.22.04.2000 19:21скачать
n13.doc122kb.22.04.2000 19:48скачать
n14.doc40kb.22.04.2000 19:57скачать
n15.doc29kb.22.04.2000 17:03скачать
n16.doc1701kb.08.10.2003 21:29скачать

n12.doc





шему растворению металла. Постепенно система переходит в состояние термодинамического равновесия и процесс растворения металла прекращается.

2. При помещении металлической пластины в водный раствор соли данного металла, диссоциирующей с образованием ионов металла, возможны следующие варианты ситуаций:

а) концентрация ионов металла мала, поэтому вероятность процесса растворения металла больше вероятности процесса осаждения металла из раствора. Повторяется ранее приведенная ситуация, вследствие которой металл относительно раствора заряжается отрицательным зарядом;

б) если концентрация ионов металла в растворе велика. то преобладает процесс осаждения ионов металла из раствора на пластину, которая зарядится положительным зарядом. Осаждение котионов из раствора будет происходить до тех пор, пока в системе пластина - раствор не установится состояние термодинамического равновесия.

Таким образом, переход ионов металла в раствор и обратно создает на границе раздела фаз двойной электрический слой, обладающий разностью потенциалов. Металл заряжается положительным или отрицательным зарядом относительно раствора в зависимости от концентрации раствора и способности (тенденции) посылать ионы в раствор.



Тенденцию металла (электрода) посылать свои ионы в раствор В. Нернст назвал электролитической упругостью растворения. Далее будет показано, что количественной мерой электролитической упругости растворения является стандартный электродный потенциал ().

Гальванический химический элемент (электрохимический элемент) включает в себя электроды, различающиеся своей природой. Так гальванический элемент Даниэля - Якоби (рис. 9.1) состоит из медной и цинковой пластин, помещенных в сернокислые растворы солей этих металлов. Растворы разделены пористой перегородкой, не позволяющей им перемешиваться.


Рис. 9.1. Схема гальванического элемента Даниэля - Якоби.
Так как электролитическая упругость растворения цинка больше, чем у меди, то Zn - электрод относительно раствора зарядится большим отрицательным зарядом, чем Cu - электрод.

При соединении электродов проводником, вследствие разности потенциалов между ними, в проводнике возникнет электрический ток: электроны будут переходить через проводник с Zn - электрода на Cu - электрод.

Уменьшение числа электронов на Zn - электроде будет компенсироваться его растворением, освобождающем новые электроны:

,

а увеличение числа электронов на Cu - электроде будет компенсироваться осаждением из раствора ионов меди:

.

Суммарно в гальваническом элементе будет происходить реакция:

,

служащая источником электрического тока в замыкающем электроды проводнике.

2. Термодинамика гальванического элемента.

Пусть в электрохимическом элементе протекает реакция вида:

M + Nn+ = Mn+ + N.

Работа, производимая элементом при растворении 1 моля вещества М, определяется произведением величины заряда q = n e- NA = nF на величину разности потенциалов между электродами, называемую электродвижущей силой (ЭДС) гальванического элемента:

A = n FE, (9.1)

где Е - ЭДС гальванического элемента, В.

Если элемент работает обратимо в условиях р = const, то

A = n FE = -GT. (9.2)

Из (9.2) очевидно, что Е определяется величиной А. Дифференцируя (9.2):

, (9.3)

и подставляя (9.3) в уравнение Гиббса - Гельмгольца (4.72):

. (9.4)

Из (9.4) следует:

,

. (9.5)

Уравнения (9.5) - это уравнения Гиббса - Гельмгольца для гальванического элемента.

Тепловой эффект химической реакции, происходящей в гальваническом элементе в соответствии с (9.5) может быть представлен в виде:

Q = A + Q’, (9.6)

где Q’ - часть теплового эффекта химической реакции.

В соответствии с (9.5):

. (9.7)

Итак, если при работе гальванического элемента энергия выделяется в окружающую среду (Q’ > 0), то < 0 (9.7). Это означает, что с увеличением температуры ЭДС гальванического элемента уменьшается.

Если работа гальванического элемента сопровождается поглощением энергии из окружающей среды (Q’ < 0), то > 0, т. е. ЭДС гальванического элемента будет увеличиваться при увеличении температуры. Гальванические элементы - эталоны, например гальванический элемент Вестона, характеризуется тем, что у них .

В соответствии с системой знаков, принятой в термохимии Q’ = -q, поэтому:

, (9.8)

где q = TS.

Величина S характеризует изменение энтропии при совершении реакции, протекающей в гальваническом элементе.

Поэтому:

. (9.9)

Работа химической реакции, протекающей в гальваническом элементе, связана с изменением активностей ионов в растворе, поэтому применение уравнения изотермы химической реакции дает:

.

Отсюда

, (9.10)

или

, (9.11)

где - стандартная (нормальная) ЭДС гальванического элемента. Из (9.11) следует, что Е0 равна ЭДС при активности всех участников реакции, равной единице.

Для гальванического элемента Даниэля - Якоби, в котором протекает реакция

Zn + Cu2+ = Zn2+ + Cu,

.

Активность чистых металлов постоянна и принимается единичной, поэтому ЭДС элемента Даниэля - Якоби равна

.
3. Электродные потенциалы.

При переходе одного моля ионов из раствора на металл1 (или обратно) совершается работа nF, где n - число моль-эквивалентов веществ, участвующих в реакции; F - число Фарадея, - разность потенциалов между металлом и раствором. Эта работа - работа системы по выравниванию химического потенциала вещества в контактных фазах и определяющаяся разностью химических потенциалов - величина, не зависящая от состава раствора, а , где аi - активность ионов в растворе. Тогда справедливо равенство:



или

,

где - постоянная для данной температуры и данного растворителя величина.

Окончательно:

. (9.12)

Величина имеет простой физический смысл: это значение потенциала при , равном единице. Она называется стандартным или нормальным потенциалом электрода и не зависит от состава раствора.

Величина стандартного потенциала, как уже указывалось ранее, служит мерой тенденции металла посылать ионы в раствор, т. е. той величиной, которую Нернст назвал электролитической упругостью растворения.

Если концентрация электролита m выражена в молях на 1 кг растворителя, то , где - коэффициент активности, поэтому

. (9.13)

Наконец, если раствор сильно разбавлен, то для приближенных вычислений активность считается равной концентрации.

Тогда

. (9.14)

Знание значений электродных потенциалов позволяет рассчитать ЭДС гальванического элемента:

, (9.15)

где .

На первый взгляд могло бы казаться, что величину потенциала электрода относительно раствора найти легко. Однако современная наука не знает путей ни для измерения, ни для вычисления абсолютных величин отдельных электродных потенциалов. Незнание абсолютных величин и знаков отдельных электродных потенциалов ни в какой степени не отражается на дальнейших выводах, и не лишает их универсальности, так как реально измеряемыми величинами являются лишь разности потенциалов. Можно выбрать какой-нибудь, но всегда один и тот же электрод и условно считать его потенциал равным нулю. По ряду веских причин в качестве нулевого всегда берут потенциал стандартного водородного электрода с давлением Н2 в 1,01105 Па и активностью Н+ в растворе, равной единице. Тогда потенциал любого электрода равен ЭДС элемента из этого электрода и стандартного водородного в том же растворителе и при той же температуре. Согласно последним соглашениям, электродный потенциал имеет отрицательный знак, если он более отрицателен, чем водородный и наоборот.

Чаще всего, однако, потенциалы электродов измеряются не непосредственно против водородного, а против вспомагательного электрода, например каломельного или хлорсеребряного, потенциал которого относительно стандартного водородного надежно определен.

В таблице 9.1 даны величины стандартных потенциалов ряда электродов в воде при 25 0С, главным образом по данным новых точных измерений. Число значащих цифр отвечает достоверности величин потенциалов.

Таблица 9.1. Стандартные электродные потенциалы в водных растворах при 25 0С.

Электрод

Электродная реакция

, В




Электрод

Электродная реакция

, В

Li+ / Li

Li+ + e- = Li

-3,04




Ni2+ / Ni

Ni2+ + 2e- = Ni

-0,24

Rb+ / Rb

Rb+ + e- = Rb

-2,92




Sn2+ / Sn

Sn2+ + 2e- = Sn

-0,136

K+ / K

K+ + e- = K

-2,92




Pb2+ / Pb

Pb2+ + 2e- = Pb

-0,126

Ba2+ / Ba

Ba2+ + 2e- = Ba

-2,90




Fe3+ / Fe

Fe3+ + 3e- = Fe

-0,036

Ca2+ / Ca

Ca2+ + 2e- = Ca

-2,87




H+ / H2(Pt)

H+ + e- = H2

0,000

Na+ / Na

Na+ + e- = Na

-2,713




Cu2+ / Cu

Cu2+ + 2e- = Cu

+0,337

Mg2+ / Mg

Mg2++2e- = Mg

-2,38




Cu+ / Cu

Cu+ + e- = Cu

+0,52

Al3+ / Al

Al3+ + 3e- = Al

-1,66




Hg22+ / Ag

Hg22+ + e- = Ag

+0,798

Mn2+ / Mn

Mn2++2e- = Mn

-1,18




Ag+ / Ag

Ag+ + e- = Ag

+0,799

Zn2+ / Zn

Zn2+ + 2e- = Zn

-0,763




Hg2+ / Hg

Hg2+ + 2e- = Hg

+0,854

Cr3+ / Cr

Cr3+ + 3e- = Cr

-0,74




Br- / Br2(Pt)

Br2 + 2e- = 2Br-

+1,066

Fe2+ / Fe

Fe2+ + 2e- = Fe

-0,44




Cl- / Cl2(Pt)

Cl2 + 2e- = 2Cl-

+1,359

Cd2+ / Cd

Cd2+ +2e- = Cd

-0,402




Au3+ / Au

Au3+ + 3e- = Au

+1,500

Co2+ / Co

Co2+ + 2e- = Co

-0,27




F- /F2(Pt)

F2 + 2e- = 2F-

+2,870

Положительные величины указывают на то, что при соединении со стандартным водородным электродом на данном электроде будет протекать реакция восстановления и он будет положительным электродом образовавшегося гальванического элемента. Отрицательные величины соответствуют тому, что данный электрод оказывается отрицательным, а процесс на нем пойдет в сторону его окисления.

С помощью электрохимического ряда напряжений (табл. 9.1) можно установить характер электродных реакций, знак и величину ЭДС и в том случае, если потенциалы электродов элемента отличаются от стандартных. При этом ЭДС равна разности электродных потенциалов, каждый из которых вычисляется с помощью и с учетом активностей продуктов электродных реакций.

Стандартный потенциал позволяет судить о способности вещества электрода окисляться и переходить в раствор: чем выше в ряду напряжений находится металл, тем более он активен, тем выше его способность окисляться, то есть вытеснять из раствора металл, располагающийся в более нижних строках ряда напряжений.
4. Классификация электродов и гальванических элементов.

Металл, помещенный в раствор, содержащий ионы этого металл, относится к электродам первого рода. В этом случае электродный потенциал определяется активностью катионов металла в электролите (см. уравнение (9.12))

,

и не зависит от активности анионов, то есть электрод обратим относительно катиона. Например, .

К электродам первого рода часто относят амальгамные электроды, отличающиеся тем, что вместо чистого металла используется раствор данного металла в ртути (амальгама), находящийся в контакте с раствором, содержащим ионы этого металла. Его потенциал зависит не только от активности ионов металла в растворе (), но и от активности металла в амальгамме ():

. (9.16)

Иногда к электродам первого рода относят газовые электроды, обратимые относительно катиона или аниона. Такие электроды состоят из инертного металла, находящегося в одновременном контакте с газообразным веществом и с раствором, содержащим ионы этого вещества. Например, в водородном электроде имеется Pt - пластина, покрытая слоем электролитической Pt для обеспечения достаточной площади поверхности и помещенная в раствор, содержащий ионы водорода. К Pt - пластине подводится газообразный водород, обтекающий ее поверхность. Водородный электрод стандартный, если , а .

Водородному электроду H+ / H2(Pt) отвечает реакция H+ + e- = H2, а электродный потенциал его рассчитывается из уравнения:

, (9.17)

где = 0.

На хлорном электроде протекает реакция:

Cl2 + e- = Cl-

для которой в соответствии с уравнением (9.11):

, (9.18)

так как уравнение (9.11) справедливо и для отдельно взятого электрода гальванического элемента.

Электроды второго рода состоят из металла, покрытого слоем труднорастворимого соединения этого металла и помещенного в раствор соли, образующей такой же анион, как и труднорастворимые соединения металла. Примером является хлорсеребряный электрод Ag | KCl, AgCl(ТВ), содержащий серебрянную пластинку с осадком хлорида серебра в растворе хлорида калия.

Равновесие протекающей на нем реакция восстановления ионов серебра

Ag+ + e- = Ag (а)

определяется концентрацией ионов Ag+ в насыщенном растворе хлорида серебра и связано с реакцией:

AgCl = Ag+ + Cl-, (б)

равновесие которой, в свою очередь, зависит от концентрации ионов Cl-. Поэтому потенциал хлорсеребряного электрода в конечном итоге определяется концентрацией раствора хлорида калия. В соответствии с уравнениями (а) и (б) суммарная реакция имеет вид:

AgCl + e- = Ag + Cl-. (в)

Таким образом, в работе хлорсеребрянного электрода участвуют катионы и анионы. Электродный потенциал может быть рассчитан (см. уравнение (12.6)) на основании реакции (а)



или суммарной реакции (в):

. (9.19)

Другим представителем электрода второго рода является каломельный электрод, широко используемый на практике: Hg | KCl, Hg2Cl2(ТВ), состоящий из ртути, покрытой каломелью Hg2Cl2 и помещенной в раствор KСl.

На этом электроде протекают реакции:

Hg+ + e- = Hg (г)

Hg2Cl2 = Hg+ + Cl- (д)

и суммарная реакция вида:

Hg2Cl2 + e- = Hg + Cl-. (е)

Как обычно электродный потенциал рассчитывается в соответствии с уравнением (9.11):

,

. (9.20)

При получении уравнений (9.19) и (9.20) принимается, что активности чистых AgCl, Hg2Cl2, Ag и Hg равны единице. Электроды второго рода обладают высокой стабильностью потенциалов и применяются в качестве электродов сравнения.

Электроды третьего рода (редокс - электроды) характеризуются тем, что все участники электродной реакции находятся в растворе. Применяемый в них инертный металл - лишь резервуар электронов и непосредственного участия в электродном процессе не принимает. Например, электродом третьего рода является электрод Pt | Fe3+, Fe2+ состоящий из Pt - пластинки, находящейся в растворе, содержащем ионы Fe с различным зарядом (например, раствор FeCl2 и FeCl3). Pt - пластинка приобретает определенный потенциал вследствие того, что ионы Fe с различным зарядом превращаются друг в друга, отдавая ей излишние электроны или приобретая у нее недостающие.

На обсуждаемом электроде происходит реакция:

Fe3+ + e- = Fe2+.

Потенциал электрода соответственно (9.11) равен:

. (9.21)

, как показывает (9.21) соответствует условию:

= = 1.

Гальванические элементы можно разделить на две группы:

а) химические гальванические элементы;

б) концентрационные гальванические элементы.

Химические гальванические элементы (например, гальванические элемент Даниэля - Якоби, Вестона) состоят из двух различных электродов, помещенных в растворы электролитов одинаковой концентрации. Для этих гальванических элементов характерно превращение энергии химической реакции в энергию электрического тока. К этой группе гальванических элементов принадлежит и гальванический элемент Вестона, используемый в качестве гальванического элемента - эталона.

Концентрационные гальванические элементы состоят из двух одинаковых электродов, помещенных в растворы различных концентраций. Опыт показывает, что электрод, погруженный в менее концентрированный раствор, является отрицательным электродом, а другой, погруженный в более концентрированный раствор - положительным.

Сопоставление опытных фактов приводит к заключению о том, что в основе работы всякого гальванического элемента лежат окислительно - восстановительные реакции, протекающие раздельно: на отрицательном электроде (аноде) - окисление, а на положительном (катоде) - восстановление.

При обозначении устройства гальванических элементов пользуются условной записью: вертикальными черточками обозначаются поверхности раздела фаз. Потенциал, возникающий на границе раздела двух растворов называется диффузионным. Чтобы подчеркнуть его отсутствие, в условной записи элемента используется двойная вертикальная черта:

Zn | ZnSO4 || CuSO4 | Cu.

Если в состав электрода гальванического элемента входит индифферентное, не участвующее в электродной реакции вещество, то его берут в скобки или отделяют запятой:

(Pt) H2 (p=1) | H+ (pH = 6) || KCl (1H), Hg2Cl2(ТВ) | Hg,

а составы фаз, их агрегатное состояние указываюся в скобках у символа фазы. Следуя этой же схеме, обозначается устройство электродов (полуэлементов).
Глава X. Кинетика гомогенных химических реакций.

Химической кинетикой называется учение о скорости протекания химической реакции и ее зависимости от различных факторов: концентраций продуктов реакции, температуры, катализаторов и т. д. Это так называемая формальная кинетика.

Термодинамический метод изучения химических процессов, позволяющий осуществлять расчет химических равновесий и устанавливать направление возможного протекания реакции, не позволяет сделать никаких заключений о действительной скорости реакции в разрешенном направлении. Действительная скорость перехода системы в состояние термодинамического равновесия может быть столь мала, что неустойчивые в термодинамическом отношении объекты ( метастабильные) могут длительно существовать и использоваться на практике. В качестве примера можно привести изделия из инструментальных сталей с метастабильной структурой “мартенсит отпуска”, работающие довольно продолжительное время. Даже жизнь растений и животных, тела которых не превращаются мгновенно в углекислоту и воду, связана с регулируемыми в их организмах скоростями биологических процессов.

1 По соглашению Международного союза по чистой и прикладной химии (ЮПАК) достигнута договоренность о единой системе знаков: работа положительна только для реакции восстановления: Men+ + ne- = Me.


Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации