Гардин А.И. НГТУ Учебник по электрическим машинам - файл n4.doc

Гардин А.И. НГТУ Учебник по электрическим машинам
скачать (2256.3 kb.)
Доступные файлы (7):
n1.doc85kb.18.06.2008 16:16скачать
n2.doc1109kb.24.06.2008 00:52скачать
n3.doc2033kb.13.02.2008 01:25скачать
n4.doc1455kb.13.02.2008 01:25скачать
n5.doc746kb.13.02.2008 01:25скачать
n6.doc51kb.13.02.2008 01:25скачать
n7.doc62kb.13.02.2008 01:25скачать

n4.doc

  1   2   3   4   5   6
Глава 4. Синхронные машины

4-1. Общие сведения

Генераторы переменного тока, работающие на электрических станциях, в большинстве случаев являются синхронными машинами. Эти машины применяются также в качестве двигателей. Наибольшее распространение получили трехфазные генераторы и двигатели.

Синхронная машина в обычном исполнении состоит из неподвижной части — статора, в пазах которого помещается трехфазная обмотка, и вращающейся части — ротора с электромагнитами, к обмотке которых подводится постоянный ток при помощи контактных колец и наложенных на них щеток (рис. 4-1).



Рис. 4-1. Явнополюсная синхронная машина (2p = 8).

Статор синхронной машины ничем не отличается от статора асинхронной машины. Ротор её выполняется или явнополюсным (с выступающими полюсами, рис. 4-1), или неявнополюсным (цилиндрический ротор, рис. 4-2).



Рис. 4-2. Неявнополюсная синхронная машина (2p = 2).

В зависимости от рода первичного двигателя, которым приводится во вращение синхронный генератор, применяются названия: паротурбинный генератор или сокращенно турбогенератор (первичный двигатель — паровая турбина), гидротурбинный генератор или сокращенно гидрогенератор (первичный двигатель — гидравлическая турбина) и дизель-генератор (первичный двигатель — дизель).

Турбогенераторы — быстроходные неявнополюсные машины (рис. 4-2), выполняемые в настоящее время, как правило, с двумя полюсами. Турбогенератор вместе с паровой турбиной, с которой он механически соединяется называется турбоагрегатом (рис. 4-3).



Рис. 4-3. Общий вид турбоагрегата.
1
-турбогенератор; 2 —паровая турбина. 3 — возбудитель.

Гидрогенераторы — в обычных случаях тихоходные явнополюсные машины (рис. 4-1), выполняемые с большим числом полюсов и с вертикальным валом (рис. 4-4).



Рис. 4-4. Общий вид гидроагрегата.

Дизель-генераторы представляют собой в большинстве случаев машины с горизонтальным валом.

Синхронные машины небольшой мощности иногда выполняются с неподвижными электромагнитами, помещенными на статоре, и обмоткой переменного тока, заложенной в пазы ротора, изготовленного из листовой электротехнической стали; в этом случае обмотка переменного тока соединяется с внешней цепью через контактные кольца и щетки (рис. 4-5).



Рис. 4-5. Синхронная машина с неподвижными электромагнитами.

Ту часть синхронной машины, в обмотке которой наводится э.д.с., принято называть якорем. Электромагниты (полюсы) вместе с замыкающим их ярмом образуют полюсную систему; ее иногда называют индуктором.

В синхронных машинах обычной конструкции статор служит якорем, ротор — полюсной системой.

Основные преимущества конструкции с вращающимися полюсами заключаются в том, что здесь возможно осуществить более надежную изоляцию обмотки неподвижного якоря, более просто, без скользящих контактов соединить ее с сетью переменного тока. Указанные преимущества особенно существенны для синхронных машин на большие мощности и высокие напряжения.

Устройство скользящих контактов для подвода постоянного тока в обмотке электромагнитов, называемой обмоткой возбуждения, не представляет затруднений, так как мощность, подводимая к этой обмотке, составляет небольшую долю [(0,3  2)%] номинальной мощности машины.

Кроме того, нужно отметить, что в современных мощных турбогенераторах, работающих с частотой вращения 3000 об/мин, окружная частота ротора достигает 180  185 м/сек; при такой частоте не представлялось бы возможным выполнить вращающийся якорь, собранный из тонких листов, механически достаточно прочным.

Ротор современного турбогенератора выполняется из цельной стальной поковки (рис. 4-6), причем берется сталь весьма высокого качества.  



Рис. 4-6. Общий вид неявнополюсного ротора турбогенератора. По бокам ротора расположены вентиляторы.

Катушки обмотки возбуждения закладываются в пазы, выфрезерованные на внешней поверхности ротора, и закрепляются в пазах прочными металлическими клиньями. Лобовые части обмотки возбуждения закрываются кольцевыми бандажами, выполненными из особо прочной стали.

Ток для питания обмотки возбуждения синхронная машина получает обычно от небольшого генератора постоянного тока, помешенного на общем валу с ней или механически с ней соединенного. Такой генератор называется возбудителем. В случае

мощного турбогенератора вал возбудителя с валом турбо генератора соединяется при помощи полуэластичной муфты.

Схема соединений возбудителя с обмоткой возбуждения синхронной машины показана на рис. 4-7



Рис. 4-7. Схема возбуждения синхронной машины.

В качестве возбудителя в большинстве случаев служит генератор постоянного тока с параллельным возбуждением (см. § 5-9,в). В последние годы для получения постоянного тока, необходимого для возбуждения синхронной машины, используются также различные выпрямители — ртутные, полупроводниковые и механические.

 Частота тока, наведенного в обмотке якоря, определяется частотой вращения п, об/мин, и числом пар полюсов р ротора:  Гц. Таким образом, для получения стандартной частоты f = 50 Гц нужно, например, при 2р = 2 иметь частоту вращения п = 3000 об/мин (с такой частотой работают почти все современные турбогенераторы), при 2р = 72 п = = 83,3 об/мин (с такой частотой работают днепровские гидрогенераторы).

Синхронные двигатели, как правило, выполняются в виде явнополюсных машин обычно на мощности от 100 кВт и выше и на самые различные частоты вращения. Они обладают рядом преимуществ по сравнению с асинхронными двигателями, особенно при большой мощности и низкой частоте вращения, так как могут работать с соs ? = 1 или с опережающим током, улучшая в последнем случае соs ? = 1 всей электроустановки.

Наряду с синхронными генераторами и двигателями применяются также синхронные компенсаторы. Они представляют собой синхронные двигатели, работающие вхолостую (без нагрузки на валу) и позволяющие в широких пределах изменять потребляемый ими реактивный ток. Последнее достигается, как будет показано, путем изменения тока возбуждения синхронных компенсаторов, которые в большинстве случаев работают, потребляя опережающий реактивный ток, т. е. как конденсаторы. Они служат для компенсации сдвига фаз тока и напряжения (для улучшения соs?) или для регулирования напряжения, например в конце линии электропередачи.

Режим работы синхронной машины, для которого она предназначена, характеризуется указанными на ее щитке номинальными величинами. На щитке синхронной машины указываются: 1) для какого режима работы машина предназначается (генератор, двигатель или компенсатор); 2) мощность (для генератора — кажущаяся мощность в В·А или кВ·А, а также — активная мощность в Вт или кВт; для двигателя — мощность на валу в Вт или кВт; для компенсатора— реактивная мощность при опережающем токе в В·А или кВ·А); 3) линейный ток в А; 4) линейное напряжение в В или кВ; 5) соs?; 6) число фаз; 7) соединение обмотки статора (звезда или треугольник); 8) частота тока в Гц; 9) частота вращения ротора в об/мин; 10) напряжение возбуждения; 11) наибольший допустимый ток возбуждения в А (за номинальный ток возбуждения принимается ток, соответствующий номинальному режиму работы).

Следует отметить, что если для трансформатора допустимая нагрузка вполне определяется кажущейся мощностью в кВ·А, то для синхронного генератора отдаваемая им мощность в киловольт-амперах не вполне определяет его допустимую нагрузку. Необходимо указать также допустимый соs? нагрузки генератора при отстающем токе. Последнее объясняется тем, что при работе генератора с отстающим током размагничивающее действие этого тока на основное поле будет тем больше, чем ниже соs?, а потому, чем ниже соs?, тем больший ток возбуждения требуется для поддержания на зажимах генератора номинального напряжения.

Мы вначале будем рассматривать работу синхронной машины в режиме генератора. При этом будем иметь в виду, что синхронная машина (как любая другая электрическая машина) обратима и что основные электромагнитные процессы в ней одинаковы независимо от того, работает ли она в режиме генератора или двигателя.

Различие между тем и другим режимами заключается в том, что в генераторе сдвиг между э.д.с. обмотки якоря и ее током меньше 90°, а в двигателе тот же сдвиг больше 90°. Вследствие этого электромагнитный момент, действующий на ротор, в генераторе направлен против вращения, а в двигателе в сторону вращения.

4-2. Холостой ход

Под холостым ходом генератора понимается такой режим его работы, при котором ток в обмотке якоря (статора) равен нулю. Следовательно, магнитное поле в синхронном генераторе при холостом ходе создается только н.с. обмотки возбуждения. Мы можем принять, что оно состоит из двух полей: основного поля, магнитные линии которого проходят через воздушный зазор и сцепляются с обмоткой статора, и поля рассеяния полюсов, магнитные линии которого сцепляются только с обмоткой возбуждения.

Основному полю соответствует поток в воздушном зазоре Ф, который при вращении полюсов будет наводить в обмотке якоря э.д.с. Важно, особенно для машин большой мощности, чтобы кривая этой э.д.с. была возможно ближе к синусоиде.

По ГОСТ 183-55 проверка синусоидальности кривой делается для линейного напряжения при холостом ходе и при рабочем соединении обмотки якоря. Критерием для оценки кривой напряжения служит коэффициент искажения синусоидальности кривой, под которым понимается выраженное в процентах отношение корня квадратного из суммы квадратов амплитуд трех наибольших. гармонических составляющих данной периодической кривой к амплитуде ее основной гармонической. При номинальном напряжении он не должен превышать 5% для генераторов мощностью свыше 1000 кВ·А и 10% для генераторов мощностью от 10 до 1000 кВ·А. В отдельных специальных случаях требования в отношении приближения кривой напряжения к синусоидальной могут быть еще более повышены согласно особым условиям, установленным между заказчиком и поставщиком машины.

Для получения кривой э.д.с., близкой к синусоиде, прежде всего необходимо, чтобы кривая поля машины была по возможности синусоидальной. В явнополюсной машине, как указывалось, этого добиваются, придавая надлежащую форму очертанию полюсного наконечника (той части полюса, которая обращена к якорю). В неявнополюсных машинах на роторе выбирается такое соотношение между частью его окружности, не имеющей пазов, и частью окружности с пазами, чтобы в кривой поля снизились амплитуды наиболее резко выраженных высших гармоник.

Кроме того, обмотка якоря выполняется с укороченным шагом, что в значительной степени способствует улучшению формы кривой наведенной э.д.с. (см. § 3-3,е). В неявнополюсных машинах (турбогенераторы) тому же самому способствует выбор большого числа пазов на полюс и фазу (q = 6  12).

В тихоходных явнополюсных машинах (например, гидрогенераторы с вертикальным валом) при большом числе полюсов полюсное деление ? получается недостаточным для размещения на нем большого числа пазов, а потому приходится для таких машин часто брать q < 3. В этом случае при открытых пазах на якоре и при q, равном целому числу, в кривой э.д.с. фазы могут иметь место так называемые зубцовые гармоники с относительно большими амплитудами. Они в основном возни кают из-за поперечных колебаний поля в воздушном зазоре, обусловленных зубчатостью якоря. Такие колебания поля вправо и влево относительно оси полюсов (рис. 4-8) происходят с частотой , так как при перемещении ротора на одно пазовое деление якоря tс получается полный период колебания.



Рис. 4-8. Картина поперечных колебаний поля в воздушном зазоре.

Соответственно этим колебаниям поля будет изменяться потокосцепление фазы, и, следовательно, в ней будет наводиться э.д.с той же частоты fг (кроме э.д.с. от первой и высших гармоник основного поля). Поэтому кривая э.д.с. получает вид, представленный на рис. 4-9.



Рис. 4-9. Осциллограмма э.д.с. синхронной машины при наличии зубцовых гармоник

 Зубцовые гармоники в кривой э.д.с. больших машин, особенно в тех случаях, когда они работают на длинные линии электропередачи, должны быть сведены по возможности до ничтожных значений. Они нежелательны потому, что могут вызвать перенапряжения резонансного характера и создать мешающие шумы в линиях связи, расположенных вблизи и вдоль линий электропередачи.

Амплитуды зубцовых гармоник не изменяются при укорочении шага, так как укорочение шага мы можем сделать только на целое число пазовых делений Поэтому приходится применять другие способы их уменьшения Достаточно эффективным способом, главным образом и применяемым в настоящее время для мощных явнополюсных машин, является выполнение обмотки с дробным числом пазов на полюс и фазу. В этом случае катушечные группы, составляющие фазу обмотки, состоят из различных чисел катушек; поэтому зубцовые гармоники э.д.с., наведенные в них, оказываются сдвинутыми по фазе на большой угол, близкий к 180o, что и приводит к уменьшению их амплитуды.

Практически мы можем считать, что изменение во времени потокосцеплений обмотки статора получается близким к синусоидальному. Поэтому мы можем поток Ф и наведенную им э.д.с., так же как для трансформатора, изобразить временными векторами.

При наличии на статоре трехфазной обмотки в ее фазах будут наводиться э.д.с., сдвинутые по фазе на 120°. Значение фазной э.д.с. может быть рассчитано по такой же формуле, как и для асинхронной машины (см. § 3-3):

.         (4-1)

Большое значение при исследовании синхронной машины имеет характеристика холостого хода. Она представляет собой зависимость э.д.с. E0, наведенной в обмотке якоря при холостом ходе, от тока Iв (или от н.с. Fв) обмотки возбуждения при постоянной номинальной частоте вращения, n = const (рис. 4-10).



Рис. 4-10. Характеристика холостого хода, E0 = f(Iв) при п = const.

Так как при п = const (следовательно, f = const) э.д.с. Е0 согласно (4-1) пропорциональна Ф, то та же кривая в другом масштабе представляет собой магнитную характеристику, Ф = f(Fв).

Характеристика холостого хода может быть получена путем расчета магнитной цепи машины для различных значений потока Ф и, следовательно, э.д.с. E0. Магнитная цепь машины состоит из пяти участков: воздушного зазора, зубцового слоя статора, его ярма, полюсов (зубцового слоя ротора для неявнополюсных машин) и ярма ротора (рис. 4-11).



Рис. 4-11. Магнитная цепь явнополюсной синхронной машины.

Зная сечения этих участков, определяем индукции B в них. Затем по кривым намагничивания для данных сортов стали находим соответствующие напряженности поля H. Умножив Н на длины участков, получим магнитные напряжения, сумма которых определяет н.с. обмотки возбуждения. Наибольшее магнитное напряжение здесь приходится на воздушный зазор: оно составляет 86  92% от н.с. обмотки возбуждения при E0 = Uн.

Характеристика холостого хода может быть также получена опытным путем. Для этого нужно при номинальной частоте вращения синхронной машины, приводимой во вращение каким-нибудь первичным двигателем, изменять ток возбуждения Iв от нуля до некоторого максимума и затем от данного максимума опять до нуля. Измеренная при этом зависимость э.д.с. E0 от тока возбуждения Iв изобразится двумя ветвями характеристики: восходящей и нисходящей. Вторая пойдет несколько выше первой. Однако расхождение между ними, обусловленное гистерезисом в полюсах и ярме ротора, невелико; можно за истинную характеристику холостого хода считать кривую, проведенную посередине между ее ветвями.

Синхронные машины часто включаются на параллельную работу. При такой работе не должны возникать уравнительные токи между машинами из-за различия форм кривых их э.д.с. e = f(t). Это условие наряду с другими вызвало необходимость стандартизовать кривую e = f(t) и выбрать в качестве стандартной синусоиду. При синусоидальных э.д.с. токи также будут практически синусоидальными. В этом случае значительно улучшаются условия работы машин, аппаратов, сетей, так как уменьшаются потери, вызванные магнитными полями токов, становится меньше опасность возникновения перенапряжений резонансного характера, ослабляется вредное воздействие линий электропередачи на линии связи.

4-3. Трехфазный синхронный генератор. Симметричная нагрузка

Рассмотрим здесь работу трехфазного синхронного генератора при симметричной нагрузке, когда векторы фазных токов равны по величине и сдвинуты по фазе на 120°. При этом будем иметь в виду одиночную работу генератора, когда он работает на свою собственную сеть независимо от других синхронных машин. 

4-3.1. Реакция якоря

Токи в обмотке якоря создают н.с., которая будет вращаться относительно якоря в ту же сторону и с такой же частотой, что и н.с. обмотки возбуждения. Действительно, частота вращения н.с. якоря , а частота тока якоря , где пп — частота вращения

полюсов; отсюда, подставляя в первое равенство значение f из второго равенства, найдем, что nя = пп; направление вращения н.с. якоря зависит от порядка чередования фаз его обмотки (например АВC), а этот порядок чередования определяется направлением вращения полюсов.

Таким образом, н.с. якоря и н.с. обмотки возбуждения неподвижны одна относительно другой. Поле машины при нагрузке будет создаваться совместным действием обеих н.с. Оно будет отличаться от поля при холостом ходе.

Воздействие н.с. якоря на поле машины называется реакцией якоря.

Вначале будем рассматривать реакцию якоря, имея в виду качественную сторону этого явления. Количественный учет реакции якоря, так же как и внутренних падений напряжения в обмотке якоря, производится при помощи векторных диаграмм, которые будут рассмотрены в дальнейшем.

Синхронный генератор может работать с отстающим или опережающим током по отношению к э.д.с. , наведенной потоком полюсов , или с током, совпадающим по фазе с э.д.с. .

Рассмотрим реакцию якоря при токе, совпадающем по фазе с э.д.с. На рис. 4-12,а1 изображены векторы тока , э.д.с.  и потока полюсов .



Рис. 4-12. Реакция якоря.
а
— при ? = 0; б — при ? = ; в — при ? = - .

Угол между  и , который будем обозначать через ?, равен нулю. Здесь под э.д.с.  понимается та э.д.с., которая наводится в обмотке якоря потоком полюсов  (потоком воздушного зазора) при холостом ходе. На рис. 4-12,а2 показаны полюсы машины и ее статор с одной фазой, причем фаза здесь заменена одной катушкой. Приданном положении фазы относительно полюсов наведенная в ней э.д.с. будет максимальной, так как поток полюсов, пронизывающий катушку в рассматриваемый момент времени, проходит через нулевое значение. Ток в фазе при  = 0 будет также максимальным. Ранее из рассмотрения созданной трехфазной обмоткой вращающейся н.с. было установлено, что ее ось (ее амплитуда) совпадает с осью той фазы, ток которой имеет максимальное значение (см § 3-4,б). Следовательно, ось н.с. совпадает с осью катушки, показанной на рис. 4-12,а2.

На этом рисунке показаны индукционные линии поля, созданного обмоткой якоря. Их направление найдено по правилу буравчика в соответствии с направлением наведенного тока, которое определено по правилу правой руки. На рис. 4-12,а2 видно, что поле якоря по отношению к оси полюсов является поперечным. Намагничивающая сила якоря будет ослаблять поле на набегающей половине полюса и усиливать его на сбегающей половине полюса.

Рассмотрим реакцию якоря при токе , отстающем на 90° от э.д.с.  (рис. 4-12,б1).



Рис. 4-12. Реакция якоря.
а
— при ? = 0; б — при ? = ; в — при ? = - .

На рис. 4-12, б2 показано положение катушки (фазы) относительно полюсов для момента времени, когда ток катушки имеет максимальное значение. Ток катушки достигает максимального значения на четверть периода позднее, чем э.д.с., т. е. после того как полюсы сдвинутся вправо на половину полюсного деления относительно того положения, при котором э.д.с. имеет максимальное значение. В рассматриваемом случае, как видно из рис. 4-12, б2, ось катушки совпадает с осью полюсов; следовательно, здесь н.с. и поле якоря будут продольными (действующими по оси полюсов). Намагничивающая сила якоря будет ослаблять поле, т. е. действовать размагничивающим образом.

Рассмотрим реакцию якоря при токе , опережающем э.д.с.  на 90° (рис. 4-12,в1). Здесь ток будет иметь максимальное значение на четверть периода ранее, чем э.д.с., т е. в катушке он будет максимальным тогда, как полюсы расположатся относительно катушки так, как показано на рис. 4-12,в2. Направление тока будет, очевидно, такое же, как и направление э.д.с., спустя четверть периода. На рис. 4-12,в2 видно, что н.с. якоря в этом случае будет также продольной (действующей по оси полюсов). Но она будет усиливать поле машины, т. е. будет действовать намагничивающим образом.

В общем случае, когда угол сдвига тока относительно э.д.с. больше нуля, но меньше по абсолютному значению 90°, ток можно разложить на две составляющие Isin и Icos (рис. 4-13,a1 и б1) и рассматривать отдельно действие н.с., создаваемых каждой из этих составляющих (Fd и Fq на рис. 4-13,а2 и б2, где Fa — н.с. якоря; ее ось совпадает с осью фазы, имеющей максимальный ток Iм).



Рис. 4-13. Реакция якоря при 90°.
а
1, а2 — при отстающем токе (>0), б1, б2 — при опережающем токе (<0) (Fd — продольная н.с. якоря; Fq —поперечная н.с. якоря).

Таким образом, приходим к следующим выводам: в генераторе при отстающем токе реакция якоря будет размагничивающей, а при опережающем токе — намагничивающей.

Рассмотрев реакцию якоря с качественной стороны, вначале выясним, какие поля будут иметь место в машине при ее нагрузке и что собой представляют внутренние падения напряжения в обмотке якоря. После этого перейдем к рассмотрению векторных диаграмм.

При холостом ходе поле в машине создается, как уже отмечалось, только обмоткой возбуждения. Большая часть индукционных линий этого поля проходит по главной магнитной цепи машины (воздушный зазор, зубцовый слой и ярмо статора, полюсы и ярмо ротора). Эту часть поля можно по аналогии с трансформатором назвать основным полем или полем взаимной, индукции. Ему соответствует поток в воздушном зазоре или поток полюсов Ф0. Поток полюсов и наведенную им э.д.с. мы изобразили временными векторами Ф0 и Е0 (рис. 4-12, а1, б1, в1).

Аналогию между трансформатором и синхронной машиной можно распространить и на работу машины с нагрузкой, так как в этом случае поле будет создаваться совместным действием н.с. обмоток возбуждения и якоря. Обе эти н.с. и создаваемое ими поле, неизменные во времени, но вращающиеся в пространстве, будут эквивалентны соответствующим н.с. и полю, переменным во времени, но неподвижным относительно обмотки якоря. Поэтому можно считать, что пространственный сдвиг между осями н.с., равный углу 90° + ? (рис. 4-13), соответствует такому же сдвигу по фазе (во времени) этих н.с.

Синхронная машина, работающая с постоянным током возбуждения, аналогична трансформатору последовательного включения (трансформатору тока), работающему с постоянным первичным током.

 

4-3.2. Активное и индуктивное сопротивления обмотки якоря

а) Индуктивное сопротивление рассеяния обмотки якоря.

Понятие индуктивного сопротивления рассеяния как некоторого параметра обмотки якоря синхронной машины аналогично тому же самому понятию в применении к обмотке статора асинхронной машины.

Поле рассеяния якоря можно представить себе сцепленным только с обмоткой якоря и не зависящим от других полей машины. Магнитные линии этого поля проходят между стенками пазов, между коронками зубцов статора и вокруг лобовых частей его обмотки. Можно считать, что потокосцепление рассеяния определяется только магнитной проводимостью тех воздушных промежутков, по которым проходят магнитные линии поля рассеяния. Поэтому можно принять, что между током якоря I и потокосцеплением рассеяния, а следовательно, и наведенной им э.д.с. Е? существует пропорциональная зависимость:

, (4-2)

где Е? — э.д.с. рассеяния;

х? — индуктивное сопротивление рассеяния якоря, значение которого можно считать постоянным.

 б) Активное сопротивление обмотки якоря.

 Активное сопротивление обмотки якоря rа больше ее сопротивления r постоянному току, что обусловлено вихревыми токами, которые наводятся полем рассеяния обмотки якоря. Увеличение rа по сравнению с r обычно составляет небольшую величину для современных больших машин, где главным образом и приходится с ним считаться. Для таких машин, например турбогенераторов, принимается ряд мер для уменьшения потерь, вызванных полем рассеяния. Наиболее эффективной мерой нужно считать выполнение обмотки статора из транспонированных стержней, т. е. из стержней, состоящих из некоторого числа элементарных проводников, особым образом скрученных друг с другом, вследствие чего э.д.с., наведенные в них пазовым полем рассеяния, практически равны между собой. Так как эти элементарные проводники изолированы друг относительно друга, то внутри стержней не возникает вихревых токов и ток распределяется практически равномерно по всем элементарным проводникам. Активное сопротивление обмотки якоря невелико, и обусловленное им активное падение напряжения составляет, например, для больших машин меньше 0,5% от номинального напряжения.

4-3.3. Диаграммы неявнополюсной машины

Векторные диаграммы для неявнополюсных машин были предложены А. Потье (A. Potier). Они аналогичны векторным диаграммам трансформатора. Для построения их при расчете машины необходимо иметь характеристику холостого хода, параметры обмотки статора rа и х?, а также обмоточные данные статора и ротора.

За н.с. статора можно принять ее первую гармонику, имеющую амплитуду (см. § 3-4,6)

,          (4-3)

и пренебречь при этом ее высшими гармониками. Поля, созданные последними, наводят в обмотке статора э.д.с. основной частоты и должны быть отнесены к полям рассеяния.

За н.с. ротора мы также примем ее первую гармонику, амплитуда которой определяется следующим образом. На рис. 4-14 изображена кривая н.с. ротора. Ее можно считать трапецеидальной, пренебрегая ступенчатостью в той ее части, которая соответствует зубцам и пазам ротора.



Рис. 4-14. Кривая н.с. обмотки возбуждения неявнополюсного ротора.

Амплитуда первой гармоники трапецеидальной кривой

,          (4-4)

где Iв — ток в обмотке возбуждения;

up — число проводников в пазу ротора;

qp —число пазов на полюс;

.

Высшими гармониками н.с. ротора можно пренебречь, так как при обычном

значении  гармоники с номером, кратным трем, почти равны нулю, а остальные незначительны. Вместо (4-4) напишем:

,          (4-5)

где wв = ирqрр — число витков обмотки в возбуждения, включенных последовательно.

Таким образом, получаем две синусоидально распределенные н.с. с амплитудами  и . Они изобразятся пространственными векторами, сдвинутыми на  эл. рад (рис. 4-13). Мы можем заменить их временными векторами н.с.  и , пульсирующих по оси рассматриваемой фазы статора и сдвинутых по фазе (во времени) на угол.

Результирующую н.с., действующую в машине и определяющую поток в воздушном зазоре, сцепляющийся с фазой статора, найдем, сложив векторы  и .

 При расчете обычно требуется определить н.с. обмотки возбуждения при заданных (например, номинальных) значениях: тока I, напряжения U и cos ?. Эта задача разрешается при помощи диаграммы неявнополюсной машины, называемой также диаграммой Потье.

Соответствующие построения для генератора, работающего с отстающим током, приведены на рис. 4-15.



Рис. 4-15. Построение диаграммы неявнополюсного генератора, работающего с отстающим током.

Здесь слева построены вектор  и под заданным углом ? к нему вектор . Затем к вектору U прибавлены векторы падений напряжения: активного  и индуктивного от расстояния . Таким путем найден вектор э.д.с. , наведенной в рассматриваемой фазе статора потоком воздушного зазора . Поток  создается результирующей н.с. ; по аналогии с трансформатором его можно назвать главным потоком машины. Для  по характеристике холостого хода определяется н.с..

На диаграмме она должна быть нанесена в виде вектора  опережающего вектор  на. Зная сумму  и одно из слагаемых этой суммы  (вектор  должен быть проведен в направлении вектора), находим другое слагаемое , как. показано на рис. 4-15. На том же рисунке показано определение э.д.с. Е0, которая наводилась бы при холостом ходе генератора, и н.с. Fв1. Следовательно, при помощи диаграммы можно определить изменение напряжения генератора, под которым понимается повышение напряжения на его зажимах при переходе от режима номинальной нагрузки к режиму холостого хода при неизменных возбуждении и частоты вращения. Оно обычно выражается в процентах от номинального напряжения. Процентное изменение напряжения, таким образом, равно:

.          (4-6)

В такой же последовательности, как и для предыдущего случая, производится построение диаграммы неявнополюсного генератора, работающего с опережающим током (? < 0) или с током, совпадающим по фазе с напряжением (? = 0).

 

На рис. 4-16 представлена диаграмма генератора, работающего с опережающим током.



Рис. 4-16. Диаграмма неявнополюсного генератора, работающего с опережающим током.

Здесь также вначале строятся заданные векторы  и , затем определяется э.д.с. . Для , по характеристике холостого хода отыскивается результирующая н.с. . Далее определяется н.с. обмотки возбуждения  и для нее по характеристике холостого хода — э.д.с. . На рис. 4-16 видно, что напряжение генератора при работе с опережающим током может получиться выше, чем при холостом ходе.

Если при построении векторной диаграммы вместо н.с. Fв1 взять пропорциональный ей ток возбуждения Iв, то весь треугольник векторов н.с. надо разделить на , как это следует из (4-5). В этом случае вместо  на векторной диаграмме откладывается вектор

.          (4-7)

Можно также брать, как это обычно и делается, н.с. обмотки возбуждения на полюс ; тогда вместо Fa надо взять:

,          (4-8)

где

          (4-9)

может быть назван коэффициентом приведения н.с. обмотки якоря к н.с. обмотки возбуждения. Вместо F?1 в этом случае будем иметь: .

Приведенные диаграммы дают результаты, достаточно точные для неявнополюсных машин, так как здесь можно принять, что кривая поля в воздушном зазоре при одной и той же амплитуде результирующей н.с. F?1 почти не зависит от положения этой амплитуды относительно оси полюсов ротора.

Для явнополюсных машин указанное допущение не может быть принято, так как здесь поле, созданное результирующей н.с., зависит от положения оси этой н.с. относительно оси полюсов. Поэтому для учета реакции якоря в явнополюсных машинах применяется другой метод — именно метод двух реакций, который был предложен А. Блонделем (A. Blondel). Диаграммы, построенные на основе этого метода, называются также диаграммами Блонделя.

 4-3.4. Диаграммы явнополюсной машины

Метод двух реакций основан на разложении н.с. якоря на две н.с. — продольную и поперечную.

Продольная н.с. якоря

?.           (4-10)

Ось ее совпадает с осью н.с. обмотки возбуждения. При ? > 0 н.с. Fd направлена против н.с. Fв обмотки возбуждения, при ? < 0 Fd действует в ту же сторону, что и Fв (см. рис. 4-13).

Поперечная н.с. якоря

?.           (4-11)

Ее ось совпадает с серединой междуполюсного пространства (с поперечной осью ротора).

На рис. 4-17 изображены кривые н.с. якоря Fa и ее составляющих Fd и Fq для случая, когда ток I отстает от э.д.с.  на угол ?.



Рис. 4-17. Разложение н.с. якоря Fa на две составляющие — продольную Fd и поперечную Fq.

Допустим, что поле, созданное результирующей продольных н.с. Fв и Fd, не зависит от поля, созданного поперечной н.с. Fq . Такое допущение справедливо только для ненасыщенной машины, имеющей максимальные индукции в стальных участках магнитной цепи, не превышающие примерно 10000 Гс.

Для реальной машины, работающей с насыщенной магнитной цепью, раздельное рассмотрение продольного и поперечного полей не может быть теоретически обосновано. Однако с некоторым приближением и для насыщенной машины можно принять, что продольное и поперечное поля существуют независимо одно от другого, так как поперечное поле обычно в большой степени ослабляется из-за наличия междуполюсных промежутков.

 Обратимся к рис. 4-18 и будем считать, что векторы представленной на этом рисунке диаграммы известны.



Рис. 4-18. Диаграмма явнополюсной машины.

Здесь:  — э.д.с., которая наводилась бы потоком , если бы в машине действовала только одна н.с. обмотки возбуждения;  —э.д.с., наведенная продольным потоком  в воздушном зазоре, созданным результирующей продольных н.с. машины; разность  можно условно считать за э.д.с., наведенную продольным потоком реакции якоря ;  — поперечный поток реакции якоря, созданный н.с. ;  — э.д.с. наведенная потоком .

Результирующую э.д.с.  можно рассматривать, как действительную э.д.с., наведенную в обмотке якоря результирующим потоком воздушного зазора. Напряжение  находим обычным путем, вычитая из  индуктивное и активное падения напряжений.

Представленная на рис 4-18 диаграмма и есть диаграмма явнополюсной машины, основанная на теории двух реакций. Изображенные здесь векторы потоков определяются по первым гармоникам соответствующих магнитных полей.

Для построения векторной диаграммы явнополюсной машины нужно предварительно найти н.с. Fad и Faq обмотки возбуждения, эквивалентные по своему индуктирующему действию н.с. Fd и Fq обмотки якоря. Мы при этом считаем, что поля, созданные н.с. Fad и Faq обмотки возбуждения, имеют такие же первые гармоники, как и поля, созданные н.с. Fd и Fq и обмотки якоря. Следовательно, при определении Ead и Eaq, соответствующих Fad и Faq, мы можем пользоваться характеристикой холостого хода, построенной как зависимость э.д.с. Е0 от н.с. Fв = Iв ( =  — число витков обмотки возбуждения на один полюс).

Введем следующие обозначения:

;           (4-12)

,           (4-13)

где kd и kq — коэффициенты приведения продольной и поперечной н.с. якоря к н.с. обмотки возбуждения.

Для определения kd и kq обратимся к кривым полей, созданных Fв, Fd и Fq. На рис 4-19,а представлены кривые поля Ввх = f(x), созданного н.с. Fв, и поля Bdx = f(x), созданного н.с. Fd. На рис. 4-19,б показана картина поля в воздушном зазоре, позволяющая построить указанные кривые (индукционные линии поля должны быть проведены таким образом, чтобы они были нормальны к поверхностям их входа в сталь и выхода из стали и представляли собой плавные кривые имея в виду симметрию полюса относительно его оси, можно было бы нанести картину поля только для одной его половины).



Рис. 4-19. Продольные поля (к определению kq).

 

Кривая поля созданного н.с. Fв, строятся следующим образом.

Сначала определяется поток индукционной трубки имеющей длину по оси машины, равную 1 см:

.          (4-14)

Индукция в основании трубки

,          (4-15)

где  — магнитная проводимость индукционной трубки, имеющей ширину и длину основания, равные 1 см.

Кривая  при другом масштабе может рассматриваться, следовательно, как кривая распределения проводимости воздушного зазора вдоль внутренней окружности статора: ?x = f(x).

Мы будем считать, что форма кривой Bвх = f(x) не зависит от насыщения зубцов и ярма статора, что близко к действительным условиям, так как синхронные машины обычно имеют относительно большие воздушные зазоры.

Кривую поля Bdx = f(x), созданного продольной н.с. якоря, найдем по соотношению

,          (4-16)

так как продольная н.с. якоря по его окружности распределена синусоидально.

Если бы нам удалось так подобрать Fd и Fв, чтобы амплитуды первых гармоник (пунктирная синусоида на рис 4 19,а) кривых Ввх = f(x) и Bdx = f(x) были равны, то Fd и Fв были бы эквивалентны по индуктирующему действию и . Практически для определения kd можно построить кривые полей Ввх и Bdx при Fd = Fв. Тогда отношение амплитуд первых гармоник соответствующих кривых полей будет равно kd.

Кривая поля В = f(х), созданного поперечной н.с. якоря Fq, показана на рис. 4-20.



Рис. 4-20. Поперечное поле (к определению kq).

Она находится аналогичным образом по картине поля. Если взять Fq = Fв, то отношение амплитуд первых гармоник кривой Вax = f(x) и кривой Bвx = f(x) (рис. 4-19,а) будет равно kq.

На рис. 4-21 и 4-22 приведены значения kd и kq в зависимости от коэффициента полюсного перекрытия  для различных отношений  при равномерном воздушном зазоре и при  =1,5 (размеры bр, ?мин, ?макс, ? указаны на рис. 4-19).



Рис. 4-21. Кривые kd = f(?) и kq = f(?.) для различных значений  при равномерном воздушном зазоре.



Рис. 4-22. Кривые kd = f(?) и kq = f(?.) для различных значений  при .

Для машин примерно до 100 кВА часто берут равномерный зазор, для машин большей мощности обычно  =1,5.

 

На рис. 4-20 видно, что кривая поперечного поля сильно искажается. Особенно резко в ней проявляется третья гармоника Bqx3. В кривой фазной э.д.с. мы будет также иметь третью гармонику. Она будет тем больше, чем больше Fq, т. е. будет увеличиваться при увеличении активного тока Icos ?.

В кривой междуфазного напряжения (при соединения обмотки статора в звезду) все гармоники с номером, кратны трем, пропадают, так как они при обходе контура, состоящего из двух фаз, направлены в противоположные стороны. В кривой фазного напряжения они будут иметь место. Это обстоятельство иногда приходится иметь в виду при использовании нулевой точки обмотки статора.

В линейном напряжении при соединении обмотки статора в треугольник также не будет третьих гармоник, так как для них обмотка будет замкнута накоротко. Однако в этом случае по треугольнику будет циркулировать ток, созданный третьими гармониками фазных э.д.с., поэтому обмотку статора явнополюсной машины, как правило, соединяют в звезду.

Покажем теперь, как производится построение диаграммы явнополюсной машины по расчетным данным для определения н.с. обмотки возбуждения и изменения напряжения. При построении диаграммы будет показано, как определяется угол ?, который необходим для вычисления Fad и Faq. Обычно считают, что амплитуда первой гармоники поперечного поля реакции якоря пропорциональна н.с. Faq, так как проводимость индукционных трубок этого поля определяется главным образом проводимостью воздушных промежутков. Поэтому для определения Eaq можно воспользоваться прямолинейной частью характеристики холостого хода или в случае необходимости ее продолжением.

На рис. 4-23 показано построение диаграммы явнополюсного генератора, работающего с отстающим током.



Рис. 4-23. Построение диаграммы явнополюсного генератора, работающего с отстающим током.

Сначала должны быть построены векторы тока  и напряжения, значения которых, так же как и угла ?, заданы. Затем к напряжению  прибавляем падения напряжения  и . Далее на продолжении вектора  откладываем отрезок , равный . Величину  находим по характеристике холостого хода для н.с.  (рис. 4-24).



Рис. 4-24. Характеристика холостого хода. (к построению диаграммы явнополюсного генератора).

Таким образом, для определения точки D значение угла ? не является необходимым. На линии, проведенной через точки 0 и D, будут находиться векторы продольных э.д.с. ,   (ср. с рис. 4-18). Перпендикуляр, опущенный из точки А на эту линию, равен, очевидно, э.д.с. . Из приведенного построения теперь можно найти угол ?.

Зная угол ?, найдем Fad = kdFa sin ?. Для определения Е0 и Ead нужно обратиться снова к характеристике холостого хода (рис. 4-24). Из нее по найденному значению результирующей продольных э.д.с Е0 и Ead, т. е. по значению , находим результирующую н.с. F?d. Искомая н.с. обмотки возбуждения

,          (4-17)

так как при ? > 0 Fad действует против Fв. На рис. 4-24 показано также определение э.д.с. Е0 и Еad.

 

Как указывалось, приближенно считают, что продольное и поперечное поля существуют независимо одно от другого В этом случае насыщение стальных участков по продольной оси, если пренебречь полями рассеяния якоря и полюсов, определяется потоком Ф?d, соответствующим э.д.с. E?d. По предложению проф. А.И. Вольдека можно в векторные диаграммы ввести потоки и , созданные н.с. и  при данном насыщении магнитной цепи. Тогда можно применить принцип наложения и складывать потоки и  и наведенные ими э.д.с и , которые на диаграммах должны заменить э.д.с. и . На рис. 4-24 показано, как определяются и  при данном насыщении машины по продольной оси, которое соответствует э.д.с. E?d. Таким образом, э.д.с. и  на векторных диаграммах не соответствуют насыщению машины по продольной оси при данном режиме ее работы, а представляют собой некоторые условные величины.

На рис. 4-25 приведено построение диаграммы явнополюсного генератора, работающего с опережающим током (в этом случае Fв = F?d - Fad). Оно понятно без пояснений. Из диаграммы следует, что напряжение на зажимах генератора при его работе с опережающим током может быть выше, чем при холостом ходе.



Рис. 4-25. Построение диаграммы явнополюсного генератора, работающего с опережающим током.

Рассмотренные диаграммы явнополюсной машины являются приближенными, так как в действительности поле в воздушном зазоре, созданное результирующей н.с. машины, будет отличаться от поля, полученного в результате сложения продольного и поперечного полей. Взаимное влияние этих полей приводит к изменению насыщения магнитной цепи и к искажению кривой результирующего поля, следовательно, к изменению амплитуды ее первой гармоники.

Для определения н.с. обмотки возбуждения явнополюсного генератора, соответствующей заданной нагрузке, при практических расчетах на заводах пользуются диаграммой неявнополюсного генератора. В этом случае нужно вместо  взять kdFa и обратиться к характеристике холостого хода E0 = f(Fв) (на оси абсцисс Fв, а не Fв1). При этом получаются, как показывает опыт, практически приемлемые результаты при cos ?  0,8.

 

4-3.5. Упрощенные диаграммы

Рассматриваемые здесь упрощенные диаграммы являются одними из первых диаграмм, которые начали применять при исследовании синхронных машин. В настоящее время они служат главным образом для качественного рассмотрения явлений в этих машинах. Количественный учет при их помощи получается обычно недостаточно точным. Только для машин неявнополюсных и ненасыщенных, следовательно, имеющих прямолинейную характеристику холостого хода, они могут дать точные результаты.

Если для ненасыщенной неявнополюсной машины построить векторную диаграмму по методу, изложенному в п. «г», то она будет иметь вид, представленный на рис. 4-26.  



Рис. 4-26. Диаграмма ненасыщенной неявнополюсной машины.

На этом рисунке видно, что продолжение вектора  попадает как раз в конец вектора . Для рассматриваемой ненасыщенной машины можно считать,

что поле реакции якоря, так же как и поле рассеяния, существует независимо от поля, создаваемого обмоткой возбуждения, и что поток реакции якоря в воздушном зазоре пропорционален н.с. якоря Fa. Следовательно, наведенная им э.д.с. Ea также пропорциональна н.с. Fa.

При полученных соотношениях нет необходимости раздельно рассматривать поле рассеяния и поле реакции якоря. Можно взять полное потокосцепление поля якоря с его обмоткой и рассматривать только одну наведенную им э.д.c., которая, очевидно, будет равна:

.          (4-18)

Сопротивление

,          (4-19)

называется синхронным индуктивным сопротивлением. Для ненасыщенной машины оно представляет собой постоянную величину.

При этих условиях диаграмма, данная на рис. 4-26, превращается в упрощенную диаграмму, представленную на рис. 4-27.



Рис. 4-27. Упрощенная диаграмма синхронной машины.

В соответствии с диаграммой на рис 4-27 можно начертить схему замещения, в виде представленной на рис. 4-28.



Рис. 4-28. Упрощенная схема замещения синхронной машины.

В дальнейшем упрощенную диаграмму будем использовать главным образом для качественного рассмотрения процессов в синхронной машине В этом случае она позволяет наглядно и просто разрешать многие вопросы.

 4-3.6. Синхронные индуктивные сопротивления по продольной и поперечной осям машины

Обратимся к диаграмме явнополюсного генератора, имеющего ненасыщенную магнитную цепь (рис. 4-29)



Рис. 4-29. Диаграмма ненасыщенного явнополюсного генератора.

Его характеристика холостого хода в этом случае представляет собой прямую линию. Для такой машины мы можем применить метод наложения, т. е. считать, что в воздушном зазоре существуют независимо один от другого поток полюсов  и потоки реакции якоря — продольный  и поперечный . Тогда можно индуктирующее действие каждого из этих потоков рассматривать отдельно, как это обычно делают в отношении потокосцепления .

Поток , созданный н.с. обмотки возбуждения, наводит в обмотке якоря э.д.с. . Потоки  и  наводят в обмотке якоря э.д.с.  и .

При принятых допущениях имеем:

,

следовательно, можем написать

,          (4-20)

где хad — индуктивное сопротивление, обусловленное продольным потоком реакции якоря.

Ток

          (4-21)

называют "продольным" током синхронной машины.

Аналогично можем написать:



или

,          (4-22)

где хaq —индуктивное сопротивление, обусловленное поперечным потоком реакции якоря;

          (4-23)

— "поперечный" ток синхронной машины.

Имея в виду, что , можем согласно рис. 4-29 и приведенным соотношениям написать:

;



и

.

Сопротивление

          (4-24)

называется синхронным индуктивным сопротивлением по продольной оси, а сопротивление

          (4-25)

синхронным индуктивным сопротивлением по поперечной оси.

 После замены в диаграмме на рис. 4-29 э.д.с. соответствующими индуктивными падениями напряжения она получает вид, представленный на рис. 4-30.



Рис. 4-30. Видоизмененная диаграмма ненасыщенного явнополюсного генератора.

Полученную диаграмму условно называют видоизмененной. При ее построении предполагалось, что машина ненасыщенна; поэтому использовались так называемые ненасыщенные значения параметров xd и xq. В действительности при нормальных условиях работы машины стальные участки ее магнитной цепи будут насыщенными, вследствие чего xd и xq будут меньше их ненасыщенных значений.

Индуктивное сопротивление xq приближенно считают постоянной величиной, не зависящей от насыщения.

Величину хad можно определить по значению э.д.с. Ead, условно учитывающему насыщение по продольной оси, или по значению э.д.с. , приближенно соответствующему действительному насыщению по продольной оси (см рис 4-24). Очевидно, что индуктивное сопротивление хd не может считаться постоянной величиной — оно будет изменяться с насыщением машины.

Как отмечалось, в основу метода двух реакций положено допущение независимости друг от друга продольного и поперечного магнитных полей машины. Это позволяет процессы в машине рассматривать отдельно по ее продольной и поперечной осям.

Чтобы лучше уяснить физическое значение параметров xd и xq, представим себе следующие опыты, проведенные с синхронной машиной. Пусть ротор машины с разомкнутой обмоткой возбуждения приводится во вращение с синхронной частотой посторонним двигателем. При этом к статору подведен трехфазный ток, создающий н.с., вращающуюся с синхронной частотой в направлении вращения ротора. Допустим, что при опыте удалось установить ось вращающейся н.с. статора так, чтобы она совпадала с осью полюсов, т. е. с продольной осью машины. Тогда распределение поля, созданного н.с. статора (в данном случае продольной), получится таким, как показано на рис 4-31,а.



Рис. 4-31. Продольное поле реакции якоря и поле рассеяния (а). Схема замещения по продольной оси (б).

На рис. 4-31,а видим, что поток, сцепленный с фазой статора, состоит из потока Фad и потока Ф?. В соответствии с этим индуктивное сопротивление обмотки статора будет равно xd = xad + x?, а наведенная в обмотке статора потоками Ф? и Фad э.д.с. равна Ead + E?.

Следовательно, измеряя при этом опыте напряжение, ток и мощность, можно было бы определить хd, так же как при опыте холостого хода трансформатора определяется x1 + x12. В соответствии с изложенным для продольной оси машины можно начертить схему замещения, изображенную на рис. 4-31,б.

 Аналогичным образом можно было бы определить xq. Действительно, представим себе, что при опыте удалось установить ось вращающейся н.с. статора так, что она совпадает с поперечной осью машины. Ротор при этом вращается в ту же сторону и с такой же частотой, что и н.с. Тогда получим распределение поля, схематически показанное на рис. 4-32,а.



Рис. 4-32. Поперечное поле реакции якоря и поле рассеяния (а). Схема замещения по поперечной оси (б).

В этом случае по данным измерений тока, напряжения и мощности можно было бы найти . Схему замещения для поперечной оси машины можно начертить, как показано на рис. 4-32,б.

Проведение указанных опытов связано, однако, с большими практическими затруднениями; поэтому для определения ха, и xq применяются другие методы, в частности, так называемый метод скольжения, который заключается в следующем.

Ротор с разомкнутой обмоткой возбуждения приводится во вращение в сторону вращения поля статора со частотой, несколько меньшей (или большей), чем частота поля. Статор в это время получает трехфазный ток от постороннего источника. Ось полюсов будет перемещаться относительно оси н.с. статора со частотой скольжения, которое должно быть установлено по возможности небольшим. При совпадении оси н.с. статора с продольной осью машины индуктивное сопротивление обмотки статора будет наибольшим, равным xd. При совпадении оси н.с. статора с поперечной осью машины индуктивное сопротивление обмотки статора будет наименьшим, равным xq. Соответственно изменению индуктивного сопротивления обмотки статора получим медленные колебания стрелок амперметра и вольтметра, показанных в схеме опыта на рис. 4-33.



Рис. 4-33. Схема опыта для определения xd и хq по методу скольжения

Определяя при опыте  и, где U и I — показания вольтметра и амперметра, получим:



и

.

Активным сопротивлением ввиду его малости по сравнению с хd и хq пренебрегаем. Опыт надо проводить при небольших напряжении и токе, чтобы иметь ненасыщенную машину и, следовательно, ненасыщенные значения xd и xq.

Поле реакции якоря неявнополюсной машины практически не зависит от положения оси н.с. статора относительно оси полюсов, поэтому для неявнополюсных машин можно считать:

.          (4-26).

Небольшое различие между хd и хq (обычно не выше 3  4%) таких машин обусловлено неравномерным распределением пазов и зубцов по окружности ротора.

 
4-3.7. Применение системы относительных единиц в теории синхронных машин

Система относительных единиц или долевых значений в настоящее время широко применяется при всякого рода практических расчетах, связанных с исследованием синхронных машин. К ее основным преимуществам нужно отнести то, что она облегчает расчеты, так как здесь при вычислениях приходится иметь дело с величинами, близкими к единице, а также то, что результаты расчетов в системе относительных единиц для машин различных типов и различной мощности мало отличаются друг от друга и поэтому легко позволяют производить сравнение машин.

При этой системе величины, характеризующие режим работы машины, и ее параметры выражаются не в вольтах, амперах, киловольт-амперах, омах и т. д., а в долях соответствующих величин и параметров, принятых за единицу.

В качестве базисных величин, значения которых условно принимаются за единицу, обычно выбираются номинальные величины. Так, например, ток в относительных единицах равен , напряжение — , мощность — , вращающий момент —  и т. д.

Для параметров машины, т. е. для ее активных и индуктивных сопротивлений, за единицу сопротивления принимается величина ; поэтому, обозначая долевые значения параметров теми же буквами, но со звездочкой, получим для активного сопротивления , для индуктивного сопротивления рассеяния  и т. д.

Если помножить долевые значения параметров на 100, то получаются их процентные значения:





Долевое значение индуктивного сопротивления реакции якоря по продольной оси машины может быть выражено следующим образом:



Так как для ненасыщенной машины



и в соответствии с прямолинейной характеристикой холостого хода



где с — коэффициент пропорциональности; F — магнитное напряжение воздушного зазора, то получим, [д. e.]:

          (4-27)

Если учесть формулы для н.с. m-фазной обмотки , магнитного напряжения воздушного зазора , линейной нагрузки [А/см], полюсного деления , то соотношение (4-27) можно переписать в следующем виде:

          (4-28)

Соотношением (4-28) устанавливается зависимость  от геометрических размеров  и  и от электромагнитных нагрузок A и B.

Для изменения  обычно приходится изменять воздушный зазор , так как остальные величины для нормальных машин могут быть изменены лишь в небольших пределах.

Аналогичным образом найдем выражение для индуктивного сопротивления реакции якоря по поперечной оси:



Учитывая, что Eaq = cFaq = ckqFacos, получим, [д. е.]:

          (4-29)

Из (4-27) и (4-29) следует, [д. е.]:

          (4-30)

Долевые значения отдельных параметров, обычные для современных синхронных машин, приведены в следующей таблице: 




Таблица 4-1

Типы машин

Параметры

 







 

Неявнополюсные машины

(турбогенераторы)

Двухполюсные

1,6 – 2

1,55 – 1,95

0,10 – 0,18

Четырехполюсные

1,4

1,37

0,14

 

Явнополюсные машины

Генераторы и двигатели

0,6 – 1,5

0,4 – 0,9

0,11 – 0,15

Компенсаторы

1,6 – 2,1

0,95 – 1,2

0,12 – 0,18

 Из этой таблицы следует, что значение ха определяется в основном значением .

 4-3.8. Характеристики и векторные диаграммы

При исследовании синхронных генераторов, так же как и при исследовании других электрических машин, обращаются к их характеристикам, т. е. к кривым, определяющим зависимости между величинами, характеризующими рабочие режимы машины.

Обычно синхронные генераторы работают с постоянной частотой вращения, что обусловлено необходимостью поддерживать постоянной частоту тока. Поэтому в дальнейшем мы будем рассматривать характеристики, которые получаются при постоянной частоте вращения.

Одной из важнейших характеристик является рассмотренная ранее характеристика холостого хода. Она влияет на форму почти всех других кривых синхронной машины, характеризующих ее работу при нагрузке.

Характеристики генератора могут быть сняты опытным путем. Их также можно построить по характеристике холостого хода и параметрам машины, полученным расчетным или опытным путем. Такое построение позволяет выявить влияние различных параметров машины на ее характеристики. Оно будет показано в дальнейшем. Одновременно с этим будут рассмотрены способы опытного определения параметров машины.

  1   2   3   4   5   6


Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации