Лекции по статистике для заочников - файл n2.doc

Лекции по статистике для заочников
скачать (665.6 kb.)
Доступные файлы (9):
n1.doc48kb.26.09.1999 17:34скачать
n2.doc178kb.24.03.2003 13:57скачать
n3.doc195kb.30.09.2003 01:40скачать
n4.doc492kb.01.07.2003 14:38скачать
n5.doc524kb.30.09.2003 01:41скачать
n6.doc405kb.17.04.2003 01:26скачать
n7.doc97kb.12.09.2000 15:41скачать
n8.doc710kb.17.03.2003 15:31скачать
n9.doc25kb.04.09.1998 01:22скачать

n2.doc

Выборочное исследование.

Понятие о выборочном методе.
Выборочное наблюдение – это такое несплошное наблюдение, при котором отбор подлежащих исследованию единиц совокупности осуществляется случайно, отобранная часть подвергается исследованию, после чего результаты распространяются на всю совокупность.

К использованию выборочного метода прибегают в тех случаях,

1 когда само наблюдение связано с порчей или уничтожением наблюдаемых единиц (пряжа на пряность, электрическая лампочка на продукт горения)

2 большой объем совокупности

3 большие затраты (финансовые и трудовые).

Обычно выборочному обследованию подвергается 5-10% всей совокупности, реже 15-25%.

Целью выборочного наблюдения является определение характеристик генеральной средней и генеральной доли (P). Характеристики выборочной совокупности –выборочная средняя и выборочная доля (w) отличаются от генеральных характеристик на величину ошибки выборки (). Потому необходимо вычислять ошибку выборки или ошибку репрезентативности, которая определяется по формулам, разработанным в теории вероятности для каждого вида выборки и способа отбора.

Существуют следующие способы отбора единиц:

1 отбор по схеме возвращенного шара, обычно называемый повторной выборкой.

При повторном отборе вероятность попадания каждой отдельной единицы в выборку остается постоянной, т.к. после отбора какой- то единицы, она снова возвращается в совокупность и снова может быть выбранной.

2 отбор по схеме невозвращенного шара, называемый бесповторной выборкой. В этом случае каждая отобранная единица не возвращается обратно, и вероятность попадания отдельных единиц в выборку все время изменяется (для оставшихся единиц она возрастет) (жеребьевка), таблицы случайных чисел например 75 из 780.
Виды выборок.
1 Собственно – случайная.

Это такая, при которой отбор единиц в выборочную совокупность производится непосредственно из всей массы единиц генеральной совокупности.

При этом количество отобранных единиц обычно определяется исходя из принятой доли выборки.

Для выборки есть отношение числа единиц выборочной совокупности и к численности единиц генеральной совокупности N.



Так при 5% выборке из партии товара в 2000 единиц численность выборки n составляет 100 ед. (), а при 20% выборке она составит 400 ед.

()

Важное условие собственно случайной выборки в том, что каждой единице генеральной совокупности предоставляется равная возможность попасть в выборочную совокупность.

При случайном отборе предельная ошибка выборки для средней равна



для доли

- дисперсия выборочной совокупности

n- численность выборки

t- коэффициент доверия, который определяется по таблице значений интегральной функции Лапласа при заданной вероятности P.

P=0.683 t=1

P=0.954 t=2

P=0.997 t=3

При бесповторном отборе предельная ошибка выборки определяется по формуле для средней



где N –численность генеральной совокупности доли



Пример

Для определения зольности угля в порядке случайной выборке было обследовано 100 проб угля. В результате обследования установлено, что средняя зольность угля в выборке 16%, = 5%. В 10-ти пробах зольность угля составила >20% с вероятностью 0,954 определить пределы, в которых будет находиться средняя зольность угля в месторождении и доля угля с зольность >20%

Решение

Средняя зольность


определяем предельную ошибку выборки

2*0.5=1%

при p=0.954 t=2



доля угля с зольностью >20%


выборочная доля определяется



где m- доля единиц, обладающих признаком




ошибку выборки для доли

С вероятностью 0,954 можно утверждать, что доля угля с зольностью более 20% в месторождении будет находиться в пределах

P= 10%+(-)6% или

Механическая выборка.

Это разновидность собственно – случайной. В этом случае вся генеральная совокупность делится на n равных частей и затем из каждой части отбирается одна единица.
Все единицы генеральной совокупности должны располагаться в определенном порядке. При этом по отношению к изучаемому показателю единицы генеральной совокупности могут быть упорядочены по существенному, второстепенному или нейтральному признаку. При этом из каждой группы должна отбираться та единица, которая находится в середине каждой группы. Это позволяет избежать систематической ошибки выборки.

Применяют: при обследовании покупателей в магазинах, посетителей в поликлиниках, каждый 5,4,3 и т.д

Пример механическая выборка

Для определения среднего срока пользования краткосрочным кредитом в банке будет произведена 5% механическая выборка, в которую попало 100 счетов. В результате обследования установлено, что средний срок пользования краткосрочным кредитом 30 дней при 9дней в 5-ти счетах срок пользования кредитом > 60 дней.

Решение

Ошибка выборки




т.е. с вероятность 0,954 можно утверждать, что срок пользования кредитом колеблется

1 в пределах 30дн.+(-)2дня, т.е.

2 доли кредитов со сроком > 60дней.



выборочная доля составит



ошибку доли определим



с вероятностью 0,954 можно утверждать, что доля кредитов в банке со сроком пользования >60дней будет находиться в пределах

Типическая выборка.

Генеральная совокупность разделяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность

Например: пр. тр. работников, состоящих из отдельных групп по квалификации.

Важная особенность – дает более точные результаты по сравнению с другими, т.к. в выборке участвует типологическая единица.

Отбор единиц наблюдения в выборочную совокупность производится различными методами. Рассмотрим типическую выборку с пропорциональным отбором внутри типических групп.

Объем выборки из типической группы при отборе пропорциональном численности типических групп, определяется по формуле



где = V выборки из типической группы

= V типической группы.

Предельная ошибка выборочной средней и доли при бесповторном случайном и механическом способе отбора внутри типических групп рассчитывается по формулам


где =дисперсия выборочной совокупности

Пример: типическая выборка

Для определения среднего возраста мужчин, вступающих в брак, в районе была произведена 5% выборка с отбором единиц пропорционально численности типических групп

Внутри групп применялся механический отбор


Социальная группа

Число мужчин

Средний возраст

Средне квадратическое отклонение

Доля мужчин вступивших во второй брак, %

Рабочие

60

24

5

10

служащие

40

27

8

20


С вероятностью 0,954 определить пределы в которых будут находиться средний возраст мужчин, вступивших в брак, и долю мужчин, вступивших в брак вторично.

Решение



средний возраст вступают в брак мужчины в выборочной совокупности



предельная ошибка выборки


с вероятностью 0,954 можно утверждать, что средний возраст мужчин, вступающих в брак, будет находиться в пределах




для мужчин, вступающих во второй брак находиться в пределах



выборочная доля определяется


выборочная дисперсия альтернативного признака равна


с вероятностью 0,954 можно утверждать, что доля вступающих в брак во второй раз находится в пределах


Серийная выборка.

При серийной выборке совокупность делят на одинаковые по объему группы – серии. Выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию.

При бесповторном отборе и определяют по формуле

где - межсерийная дисперсия


где выборочная средняя серии
выборочная средняя серийной выборки

R- число серий генеральной совокупности

r- число отобранных серий

Пример: в цехе 10 бригад с целью изучения их производительности труда будет осуществлена 20% серийная выборка, в которую попали 2 бригады. В результате обследования установлено, что с вероятностью 0,997 определить пределы, в которых будет находиться средняя выработка рабочих цеха.

Решения



выборочная средняя серийной выборки определяется по формуле





с вероятностью 0,997 можно утверждать, что средняя выработка рабочих цеха находится в пределах

Пример.

На складе готовой продукции цеха находятся 200 ящиков деталей по 40 штук в каждом ящике. Для проверки качества готовой продукции будет произведена 10% серийная выборка. В результате выборки установлено, что для бракованных деталей составляет 15%. Дисперсия серийной выборки равна 0,0049.

С вероятностью 0,997 определить пределы, в которых находится доля бракованной продукции в партии ящиков

Решение

Доля бракованных деталей будет находиться в пределах



определим предельную ошибку выборки для доли по формуле



с вероятностью 0,997 можно утверждать, что доля бракованных деталей

в партии находится в пределах



В практике проектирования выборочного наблюдения возникает потребность нахождении численности выборки, которая необходима для обеспечения определенной точности расчета генеральных характеристик - средней и доли.

Предельная ошибка выборки, вероятность ее появления и вариация признака предварительно известны.

При случайном повторном отборе численность выборки определяется по формуле



при случайном бесповторном и механическом отборе численность выборки



для типической выборки



для серийной выборки



Пример в районе проживает 2000 семей.
Предполагается провести их выборочное обследование методом случайного бесповторного отбора для нахождения среднего размера семьи.

Определить необходимую численность выборки при условии, что с вероятностью 0,954 ошибка выборки не превысит 1 человека при среднем квадратическом отклонении 3 человека.

Решение


Пример.

В городе проживает 10тыс. семей. С помощью механической выборки предлагается определить долю семей с тремя детьми и более. Какова должна быть численность выборки, чтобы с вероятностью Р=0,954 ошибка выборки не превышала 0,02, если на основе предыдущих обследований известно, что дисперсия равна 0,02?

Решение.



Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации