Лекции по статистике для заочников - файл n4.doc

Лекции по статистике для заочников
скачать (665.6 kb.)
Доступные файлы (9):
n1.doc48kb.26.09.1999 17:34скачать
n2.doc178kb.24.03.2003 13:57скачать
n3.doc195kb.30.09.2003 01:40скачать
n4.doc492kb.01.07.2003 14:38скачать
n5.doc524kb.30.09.2003 01:41скачать
n6.doc405kb.17.04.2003 01:26скачать
n7.doc97kb.12.09.2000 15:41скачать
n8.doc710kb.17.03.2003 15:31скачать
n9.doc25kb.04.09.1998 01:22скачать

n4.doc

  1   2   3
Понятие корреляции
Все явления в мире взаимосвязаны. Это значит, что каждое событие оказывает влияние на все события, следующие за ним, а само происходит вследствие всех событий, случившихся до него.

До сих пор рассматривались основные статистические характеристики изолированно друг от друга, теперь будем изучать, как и в к5акой форме одно явление оказывает влияние на другое. Это является предметом корреляционно-регрессионного анализа.

Три основные задачи корреляционно-регрессионного анализа:

1. Определение факторов, которые оказывают определяющее воздействие на результативный признак.

2. Определение форм воздействия факторов и результата.

3. Определение степени влияния на результат учтенных и неучтенных факторов.

В статистике изучаются следующие виды связей:

1. Балансовая связь – характеризует зависимость между источниками формирования результатов и их использованием.

2. Компонентные связи – характеризуются тем, что изменение статистического показателя определяется изменением компонентов, входящих в этот показатель, как множители.

Ipq=Ip*Iq

3. Факторные связи – характеризуются тем, что они появляются в согласованной вариации изучаемых показателей.

Одни выступают как факторные, другие как результативные.

При функциональной связи изменение результативного признака обусловлено всецело действием одного факторного признака х, т.е. одному факторному соответствует одно и только одно значение результативного признака y=f(x). Функциональная связь проявляется во всех случаях наблюдения и для каждой конкретной единицы изучаемой величины.

Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, в среднем при большом числе наблюдений, то такая зависимость называется стохастической. Частным случаем стохастической связи является корреляционная, при которой изменение среднего значения результатов признака обусловлено изменением факторных признаков. По степени тесноты связи различают количественные критерии оценки тесноты связи.


Величина коэффициента корреляции

Характер связи

до |±0,3|

практически отсутствует

|±0,3|-|±0,5|

слабая

|±0,5|-|±0,7|

умеренная

|±0,7|-|±1,0|

сильная


По направлению выделяют связь прямую, т.е. с увеличением или уменьшением значения факторного признака происходит увеличение или уменьшение результата.

Например, увеличение производительности труда способствует увеличению уровня рентабельности.

И обратную, когда значения результативного признака изменяются под воздействием факторного, но в противоположном направлении.

Например, с увеличением фондоотдачи снижается себестоимость единицы продукции.

По аналитическому выражению выделяют связи прямолинейные и нелинейные.

В статистике не всегда требуются количественные оценки, важно просто определить форму воздействия одних факторов на другие.

Для выявления наличия связи, и характера, и направления используются следующие методы:

- приведение параллельных данных

- аналитических группировок

- графический

- корреляции

1.Метод приведения параллельных данных - основан на сопоставлении двух или нескольких рядов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере.

x

1

2

3

4

5

6

7

8

9

y

5

6

9

10

14

17

15

20

23

Т.е. с увеличением x ? y, т.е. это может быть либо кривая, либо парабола 2 порядка.

2.Графически - взаимосвязь двух признаков изображается с помощью поля корреляции. В системе координат на оси абсцисс откладываются значения факторного признака, а у – результативного.

При отсутствии тесных связей имеет место беспорядочное расположение точки на графике. Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи.


Для социально-экономических явлений характерно, что наряду с существенными факторами, формирующими уровень результативного признака на него оказывают воздействие многие случайные факторы. Поэтому корреляционная связь отражается функцией у=?(х)+?, где ? – влияние случайных факторов.

3.Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при котором изменение одной из случайных величин приводит к уменьшению математического ожидания другой. В статистике принято различать следующие варианты зависимостей:

1. Парная корреляция – связь между двумя признаками.

2. Частная корреляция – зависимость между результатом и одним факторным признаком при фиксированном значении других факторных признаков.

3. Множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Корреляционный анализ имеет своей задачей кол-но определить тесноту связи между двумя признаками (при парной связи) и между результативными и множеством факторных признаков (при многофакторной связи).

Теснота связи количественно выражается величиной коэффициентов корреляции. Величина коэффициентов корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно-следственным связям. Одновременно с корреляцией начала использоваться регрессия. Корреляция и регрессия тесно связаны между собой:

Первая оценивает силу статистической связи, вторая исследует ее форму. Та и другая служат для установления соотношения между явлениями.

Корреляционно-регрессионный анализ как общее понятие, включает в себя измерение тесноты направления связей и установления аналитического выражения (формы) связей (регрессионный анализ).

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (результативный признак) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной).

- линейная функция и многофакторной (множественной)

2х2 - парабола

- гипербола нелинейная регрессия
По направлению связи распределяют:

а) прямую регрессию (положительную)

б) обратную (отрицательную), т.е. с увеличением или уменьшением независимой величины зависимая соответственно уменьшается или увеличивается.

Прямая (положительная) регрессия



Обратная (отрицательная) регрессия



Методы корреляционно-регрессионного анализа связи показателей

Наиболее разработанная – метод парной корреляции, рассматривающая влияние вариации факторного признака (х) на результативный (у).

Для выявления связи применяются различные виды уравнения прямолинейной и криволинейной связей. Аналитическая связь между ними может быть описана следующими уравнениями:

Прямая

Гипербола

Парабола 2х2

Определить тип уравнения можно, исследуя зависимость графически. Однако есть более общее указание.

- если результативный и факторный признаки ? одинаково, примерно в арифметической прогрессии – прямая.

- при обратной – гиперболическая.

- если факторный признак увеличивается в арифметической, а результативный быстрее, то парабола или степенная.

Оценка параметров уравнений регрессии а0; а1; а2 осуществляется методом наименьших квадратов

при линейной зависимости



n – объем исследуемой совокупности.

; где а0 – усредненное влияние на результативный признак случайных факторов. а1 – коэффициент регрессии показывает насколько изменяется в среднем значение результативного признака при увеличении факторного на единицу собственного измерения.

Пример:

Имеются данные, характеризующие деловую активность ЗАО:

прибыль (тыс.р.) и затраты на 1 р. произведенной продукции (коп.)



затраты на 1 р. произв. продукции (коп.)

прибыль (тыс.р.)

х2

ху



1

77

1070

5929

82390

1016

2

77

1001

5929

77077

1016

3

81

789

5561

63909

853

4

82

779

6724

63878

812

5

89

606

7921

53934

527

6

96

221

9216

21216

242

Итого:

502

4466

42280

362404

4466




На практике часто исследования проводятся по большому числу наблюдений. В этом случае исходные данные представляют в сводной корреляционной таблице. При этом анализу подвергаются сгруппированные данные и по факторному х и по результативному у, т.е. уравнение парной регрессии целесообразно строить на основе сгруппированных данных.

Если значения х и у заданы в определенных интервалах (а-в), то для каждого интервала сначала определяют середину интервала (а+в)/2, а затем уже коррелируют значения х/ и у/ и строят уравнения регрессии между ними.

Корреляционная таблица дает общее представление о направлении связи. Если оба признака (х и у) располагаются в возрастающем порядке, а частоты (fxy) сосредоточены по диагонали сверху вниз направо.



прямая обратная
О тесноте связи между признаками х и у по корреляционной таблице можно судить по кучности расположения частот вокруг диагонали (поскольку заполненные клетки таблицы в стороне от нее).

Если клетки заполнены большими цифрами, то связь слабая. Чем ближе частоты (fxy) располагаются к одной из диагоналей, тем теснее связь. Если в расположении частот (fxy) нет системности, то можно судить об отсутствии связи.

Пример:

величина капитала,

тыс.р.

у

величина работающих активов, тыс.р.

х

Число банков

fy

уfy

xyfy




14-70

70-126

126-182

182-238

у/ср

х/ср

42

98

154

210

145-2684

1714,5

4

6

2

3

15

25717,5

2904363

2684-4624

3654,0

1

3







4

14616

1227744

4624-6564

5594




1

1




2

11181

1409688

6564-8503

7533,5

1

1

2




4

30134

3375008

8503-125842

67172,5

2




1

2

5

335862,5

44199505

Число предпр.

fx




8

11

6

5

30

417518

53116308

xfx




336

1078

924

1050

3388







x2fx




14112

105644

142296

220500

482552









Если у нас наличие линейной связи:



где n=30 коммерческих банков.

fx и fy – число банков согласно распределению соответственно по факторному и результативному признакам.

yfy; xfx – значение результативного и факторного признаков по конкретной группе коммерческих банков.

Для 1 группы yfy= 1714,5*15=25717,5

xfx=42*8=336

хyfy=1714,5*4*42+1714,5*6*98+1714,5*2*154+1714,5*3*210=2904363

х2fx=42*42*8=14112



Статистические данные обладают ошибками упрощения, которые возникают как следствие:

1. Неполноты охвата единиц совокупности

2. Неполноты факторов, определяющих явление

3. Характера выбранного уравнения связи

Использование метода наименьших квадратов позволяет получить достоверные оценки при небольшом количестве наблюдений.

При изучении корреляционной связи показателей коммерческой деятельности в условиях наблюдения так называемого малого и среднего бизнеса, анализу подвергается сравнительно небольшие по составу единиц совокупности.

Коэффициент эластичности
Для оценки влияния факторного признака на результативный применяется коэффициент эластичности.

Он рассчитывается для каждой точки и в среднем по всей совокупности.

Коэффициент эластичности (Э)

Э= Коэффициент эластичности показывает, на сколько % изменяется результативный признак при изменении факторного признака на 1%.



Если х=42, то при увеличении его на 1%, т.е. 42*(1+0,01)=42,42; С 42 до 42,42. Капитал. увеличится. Э=(59,7*42)/(7177,6+59,7*42)=2507,4/(7177,6+2507,4)=2507,4/9685=0,259

Это означает, что при увеличении фактического признака с 42 до 42,42 – результативный признак увеличится на 0,259%.
Измерение тесноты связи
Кроме состав. уравн. регрессии для коррелируемых переменных второй задачей является измерение тесноты связи между ними. Измерить ее означает определить насколько вариация результативного признака зависит от вариации факторного. Измерить тесноту зависимости между х и у можно при помощи:

1. Корреляционного отношения (?) (коэффициент корреляции по Персону)

2. Линейного коэффициента корреляции (r)

Первый применим ко всем зависимостям, второй только при линейной зависимости.

а) корреляционное отношение различается:

1. теоретическое

2. эмпирическое

Теоретическое представляет собой относительную величину, получающуюся в результате сравнения среднего квадратического отклонения в ряду выравненных значений результативного признака (), рассчитанных по уравнению регресии, со средним квадратическим отклонением в ряду эмпирических значений результатов признака.

первое – ?, второе – ?.

Учитывая, что выравненные эмпирические совпадают, т.е.

и средние значения признака у рядов одинаково (), среднее квадратическое отклонение ряда выравненных значений результативного признака можно записать


Если дисперсию выравненного ? 2 обозначить через среднее квадратическое для эмпирического ряда результатов признака ?= ? 2=Dy, то корреляционное отношение можно записать

Возведя обе части в квадрат получим ; это корреляционное отношение называется коэффициентом детерминации. ?2=Dy, характеризует вариацию в ряду (у) за счет всех факторов, включая и фактор (х), а ?2=характеризует вариацию результативного признака под влиянием фактора х. Если найдем отношение , то получим малую долю, занимаемую дисперсией, определяемую влиянием факторного признака х. Т.е. в основе корреляционного отношения лежит правило сложения дисперсий .

При изучении корреляционных связей дисперсия в ряду и является межгрупповой дисперсией ?2=ибо она отражает колеблемость групповых значений результативного признака (т.е. характерных для этой группы х) вокруг общей средней ряда, т.е. колеблемость за счет факторного признака.

Т.е. средняя из внутригрупповых дисперсий это и будет остаточная дисперсия, т.е. вариация в ряду у за счет всех остальных факторов, кроме х



Из правила сложения дисперсий



Корреляционное отношение, находится в пределах от 0 до 1.
1. Если результ. полностью зависит от фактора х



2. Фактор х не анализ. влияние на у



Т.е. чем ближе значение корреляционного отношения к 1, тем больше связь у и х. Чем ближе к 0, тем связь слабее. Обычно ? меньше 0,3, зависимость маленькая; 0,3-0,6 – зависимость средняя, больше 0,6 – большая.

Пример.

внесено удобр.,ц/га.

х

урож.,ц/га

у



1

6

6,2

2

9

8,5

3

10

10,4

4

12

11,9

5

13

13,0

Итого:15

50

50

Зависимость параболическая.



5a0+15a1+55a2=50

15a0+55a1+225a2=167

55a0+225a1+979a2=649
a0=3,14

a1=2,98

a2=-0,241



Дисперсия ряда теоретическая. Значение результативного признака.

Дисперсия ряда эмпирическая. Значение результативного признака.



Корреляционное отношение характеризует высокую степень тесноты зависимости изменения урожайности от количества внесенных удобрений.

От теоретического следует отличать эмпирическое корреляционное отношение, которое рассчитывается по данным групповых таблиц.



где - дисперсия групповых средних результативного признака

- общая дисперсия результативного признака.

Эмпирическое корреляционное отношение не требует знания и расчета уравнений регрессии, а основывается на сопоставлении межгрупповой и общей дисперсий результативного признака, рассчитанных по групповым таблицам.

Рассмотрим пример с корреляционной таблицей:

На основе этого показателя можно сделать вывод о том, что вариация групповых средних несущественно зависит от вариации группировочного признака.

Линейный коэффициент корреляции
В случае линейной зависимости между двумя коррелируемыми величинами тесноту связи измеряют линейным коэффициентом корреляции (r), который может быть рассчитан по нескольким формулам:

1.

где а1- коэффициент регрессии в управлении связи;

?х- среднее квадратическое отклонение факторного признака;

?у- среднее квадратическое отклонение результативного признака.

2.

3.


Рассчитаем линейный коэффициент корреляции по разным формулам:

основные произв. фонды, млн.р. х

валовая продукция, млн.р. у

х2

ху



1,2

2,8

1,44

3,36

1,5

1,6

4,0

2,56

6,4

2,4

2,5

3,8

6,25

9,5

4,3

3,8

6,5

14,44

24,7

7,0

4,3

8,0

18,49

34,4

8,1

5,5

10,1

30,25

55,55

10,6

6,0

9,5

36,0

57,0

11,7

8,0

12,5

64,0

100

15,6

9,1

18,3

82,81

166,53

18,3

10,0

24,5

100

245

20,2

?х=52

?у=100

2=356,24

?ху=702,44

100

n=10

10а0+52а1=100

52а0+356,24а1=702,44

а0=-1,024; а1=2,12



Линейный коэффициент корреляции может принимать значения от -1 до +1

Если r отрицательна – это обратная зависимость между х и у, т.е. с увеличением х уменьшается у и наоборот.

Если r =0 – связь отсутствует между х и у

Если 0 < r < 1 – связь функциональная.
  1   2   3


Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации