Контрольная работа - Общая экология (вариант №5) - файл n1.docx

Контрольная работа - Общая экология (вариант №5)
скачать (164.8 kb.)
Доступные файлы (1):
n1.docx165kb.24.11.2012 02:30скачать

n1.docx

Иркутский Государственный Технический Университет

Контрольная работа

по Экологии


(вариант № 5)

Выполнил: Удовенко

Сергей Николаевич

группа: ГМз-10


Иркутск

2012

Оглавление

1. Контрольные вопросы

6. Дайте понятие биосферы. Общие представление о биосфере.

16. Дайте характеристику основных экологических последствий глобального загрязнения атмосферы.

26. Что понимается под рекультивацией нарушенных территорий?

36. Понятие энергетических загрязнений. Принципиальные меры защиты среды от воздействий энергетических загрязнений.

2. Задачи контрольной работы.

2.1 Задача №1

2.2 Задача №2

2.3 Задача №3

2.4 Задача №4

2.5 Задача №5

3. Список используемой литературы.

1. Контрольные вопросы

6. Дайте понятие биосферы. Общие представление о биосфере.
Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км. Особенностью этих частей является то, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы - воздуха, воды и горных пород, и органического вещества - биоты, обусловило формирование почв и осадочных пород.
Наша планета имеет неоднородное строение и состоит из концентрических оболочек (геосфер) внутренних и внешних. К внутренним относятся ядро, мантия, а к внешним - литосфера (земная кора), гидросфера, атмосфера и сложная оболочка Земли - биосфера.

Литосфера (греч. «литос» - камень), каменная оболочка Земли, включающая земную кору мощностью (толщиной) от 6 (под океанами) до 80 км (горные системы). Земная кора сложена горными породами. Доля различных горных пород в земной коре неодинакова , более 70% приходится на базальты, граниты и другие магматические породы, около 17% -на преобразованные давлением и высокой температурой породы и лишь чуть больше 12% - на осадочные.

Гидросфера (греч. «гидор»- вода), водная оболочка Земли. Ее подразделяют на поверхностную и подземную.

Поверхностная гидросфера - водная оболочка поверхностной части Земли. В ее состав входят воды океанов, морей, озер, водохранилищ, болот, ледников, снежных покровов и др. Все эти воды постоянно или временно располагаются на земной поверхности и носят название поверхностных.

Поверхностная гидросфера не образует сплошного слоя и прерывисто покрывает земную поверхность на 70,8%.

Подземная гидросфера - включает воды, находящиеся в верхней части земной коры. Их называют подземными. Сверху подземная гидросфера ограничена поверхностью Земли, нижнюю ее границу проследить невозможно, так как гидросфера очень глубоко проникает в толщу земной коры.

По отношению к объему земного шара общий объем гидросферы не превышает 0,13%.

Атмосфера (греч. «атмос» - пар), газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли (табл. 6.3, по Н. Реймерсу, 1990). Общая масса атмосферы : 5,15 -1015 т. На высоте от 10 до 50 км, с максимумом концентрации на высоте 20-25 км, расположен слой озона, защищающий Землю от чрезмерного ультрафиолетового облучения, гибельного для организмов.


16. Дайте характеристику основных экологических последствий глобального загрязнения атмосферы.
К важнейшим экологическим последствиям глобального загрязнения атмосферы относятся:

1) возможное потепление климата («парниковый эффект»);

2) нарушение озонового слоя;

3) выпадение кислотных дождей.

Возможное потепление климата («парниковый эффект»)

Наблюдаемое в настоящее время изменение климата, которое выражается в постепенном повышении среднегодовой температуры, начиная со второй половины прошлого века, большинство ученых связывают с накоплениями в атмосфере так называемых «парниковых газов» - диоксида углерода (СO2), метана (CH4), хлорфторуглеродов (фреонов), озона (O3), оксида азота и др.

Парниковые газы, и в первую очередь CO2, препятствуют длинноволновому тепловому излучению с поверхности Земли. По Г. Хефлингу (1990), атмосфера, насыщенная парниковыми газами, действует как крыша теплицы. Она, с одной стороны, пропускает внутрь большую часть солнечного излучения, с другой- почти не пропускает наружу тепло, переизлучаемое Землей.

В связи с сжиганием человеком все большего количества ископаемого топлива: нефти, газа, угля и др. (ежегодно более 9 млрд т условного топлива) - концентрация CO2 в атмосфере постоянно увеличивается. За счет выбросов в атмосферу при промышленном производстве и в быту растет содержание фреонов (хлорфторуглеродов). На 1-1,5% в год увеличивается содержание метана (выбросы из подземных горных выработок, сжигание биомассы, выделения крупным рогатым скотом и др.). В меньшей степени растет содержание в атмосфере и оксида азота (на 0,3% ежегодно).

Следствием увеличения концентраций этих газов, создающих «парниковый эффект», является рост средней глобальной температуры воздуха у земной поверхности.

Нарушение озонового слоя

Озоновый слой (озоносфера) охватывает весь земной шар и располагается на высотах от 10 до 50 км с максимальной концентрацией озона на высоте 20-25 км. Насыщенность атмосферы озоном постоянно меняется в любой части планеты, достигая максимума весной в приполярной области.

Впервые истощение озонового слоя привлекло внимание широкой общественности в 1985 г., когда над Антарктидой было обнаружено пространство с пониженным (до 50%) содержанием озона, получившее название «озоновой дыры». С тех пор результаты измерений подтверждают повсеместное уменьшение озонового слоя практически на всей планете. Так, например, в России за последние 10 лет концентрация озонового слоя снизилась на 4-6% в зимнее время и на 3% - в летнее.

В настоящее время истощение озонового слоя признано всеми как серьезная угроза глобальной экологической безопасности. Снижение концентрации озона ослабляет способность атмосферы защищать все живое на Земле от жесткого ультрафиолетового излучения (УФ-радиация). Живые организмы весьма уязвимы для ультрафиолетового излучения, ибо энергии даже одного фотона из этих лучей достаточно, чтобы разрушить химические связи в большинстве органических молекул (Воронов, 1993). Не случайно поэтому в районах с пониженным содержанием озона многочисленны солнечные ожоги, наблюдается увеличение заболевания людей раком кожи и др. Так например, по мнению ряда ученых-экологов, к 2030 г. в России при сохранении нынешних темпов истощения озонового слоя заболеют раком кожи дополнительно шесть миллионов человек. Кроме кожных заболеваний возможно развитие глазных болезней (катаракта и др.), подавление иммунной системы и т. д.

Установлено также, что растения под влиянием сильного ультрафиолетового излучения постепенно теряют свою способность к фотосинтезу, а нарушения жизнедеятельности планктона приводят к разрыву трофических цепей биоты водных экосистем и т. д.
Кислотные дожди

Одна из важнейших экологических проблем, с которой связывают окисление природной среды- кислотные дожди. Образуются они при промышленных выбросах в атмосферу диоксида серы и оксидов азота, которые, соединяясь с атмосферной влагой, образуют серную и азотную кислоты (рис. 13.3). В результате дождь и снег оказываются подкисленными (число рН ниже 5,6). В Баварии (ФРГ) в августе 1981 г. выпадали дожди с кислотностью рН - 3,5. Максимальная зарегистрированная кислотность осадков в Западной Европе - рН - 2,3.



Кислотные осадки: их образование и вредное воздействие на экосистемы
(по Б. Небелу)


Суммарные мировые антропогенные выбросы двух главных загрязнителей воздуха - виновников подкисления атмосферной влаги - SO2 и NОx - составляют ежегодно более 255 млн т (1994 г.). На огромной территории природная среда закисляется, что весьма негативно отражается на состоянии всех экосистем. Выяснилось, что природные экосистемы подвергаются разрушению даже при меньшем уровне загрязнения воздуха, чем тот, который опасен для человека. «Озера и реки, лишенные рыбы, гибнущие леса - вот печальные последствия индустриализации планеты» (Х. Френч, 1992).

Опасность представляют, как правило, не сами кислотные осадки, а протекающие под их влиянием процессы. Под действием кислотных осадков из почвы выщелачиваются не только жизненно необходимые растениям питательные вещества, но и токсичные тяжелые и легкие металлы - свинец, кадмий, алюминий и др. Впоследствии они сами или образующиеся токсичные соединения усваиваются растениями и другими почвенными организмами, что ведет к весьма негативным последствиям. Например, возрастание в подкисленной воде содержания алюминия всего лишь до 0,2 мг на один литр летально для рыб. Резко сокращается развитие фитопланктона, так как фосфаты, активизирующие этот процесс, соединяются с алюминием и становятся менее доступными для освоения. Алюминий снижает также прирост древесины. Токсичность тяжелых металлов (кадмия, свинца и др.) проявляется еще в большей степени.

Пятьдесят миллионов гектаров леса в 25 европейских странах страдают от действия сложной смеси загрязняющих веществ, включающей кислотные дожди, озон, токсичные металлы и др. Гибнут хвойные горные леса на северных Аппалачах и в Баварии. Отмечены случаи поражения хвойных и лиственных лесов в Карелии, Сибири и в других районах нашей страны.

Воздействие кислотных дождей снижает устойчивость лесов к засухам, болезням, природным загрязнениям, что приводит к еще более выраженной их деградации как природных экосистем.


26. Что понимается под рекультивацией нарушенных территорий?

Рекультивация нарушенных территорий

Рекультивация - комплекс работ, проводимых с целью восстановления нарушенных территорий и приведения земельных участков в безопасное состояние.

Нарушение территории происходит в основном при открытой разработке месторождений полезных ископаемых, а также в процессе строительства. Нарушенные земли теряют первоначальную ценность и отрицательно влияют на окружающую среду.

Объектами рекультивации являются:

- карьерные выемки, мульды оседания, провальные воронки, терриконы, отвалы и другие карьерно-отвальные комплексы;

- земли, нарушенные при строительных работах;

-территории полигонов твердых отходов;

- земли, нарушенные в результате загрязнения их жидкими и газообразными отходами (нефтезагрязненные земли, газогенные пустыни и др.).

Рекультивация (восстановление) осуществляется последовательно, по этапам. Различают техническую, биологическую и строительную рекультивации.

Техническая рекультивация означает предварительную подготовку нарушенных территорий для различных видов использования. В состав работ входят: планировка поверхности, снятие, транспортировка и нанесение плодородных почв на рекультивируемые земли, формирование откосов выемок, подготовка участков для освоения и т. п.

На этапе технической рекультивации засыпают карьерные, строительные и другие выемки, в глубоких карьерах устраивают водоемы, полностью или частично разбирают терриконы, отвалы, хвостохранилища, закладывают «пустыми» породами выработанные подземные пространства. После завершения процесса осадки поверхность земли выравнивают.

Биологическая рекультивация проводится после технической для создания растительного покрова на подготовленных участках. С ее помощью восстанавливают продуктивность нарушенных земель, формируют зеленый ландшафт, создают условия для обитания животных, растений, микроорганизмов, укрепляют насыпные грунты, предохраняя их от водной и ветровой эрозии, создают сенокосно-пастбищные угодья и т. д. Работы по биологической рекультивации ведут на основе знания развития сукцессионных процессов.

При благоприятных условиях рекультивацию нарушенных земель осуществляют не по всем этапам, а выбирают какое-либо одно преимущественное направление рекультивации: водохозяйственное, рекреационное и др. (табл. 20.3).

Основные направления рекультивации и виды последующего использования
рекультивированных земель.




Например, на территориях, подверженных воздействию газодымовых выбросов от промышленных предприятий, рекомендуется санитарно-гигиеническое направление рекультивации с использованием газоустойчивых растений.

Очень сложно рекультивировать нефтезагрязненные земли, так как они имеют обедненную биоту и содержат канцерогенные углеводороды типа бенз(а)пирена. Для этого необходимы рыхление и аэрация почвы, использование бактерий, деградирующих нефть, посев специально подобранных трав и др.

При необходимости выполняют также строительный этап рекультивации, в ходе которого на подготовленных территориях возводят здания, сооружения и другие объекты.

Работы по рекультивации нарушенных территорий обеспечиваются нормативно-инструктивными материалами и ГОСТами. Например, действует ГОСТ 17.5.3.04-83 «Охрана природы. Земли. Общие требования к рекультивации земель».

Сегодня уже нельзя ограничиваться только восстановлением нарушенного массива, плодородия земель, созданием растительного покрова, а важно восстанавливать и все другие компоненты природной среды. Необходима комплексная рекультивация, а точнее рекультивация природной среды (Е. М. Сергеев и др., 1992).

36. Понятие энергетических загрязнений. Принципиальные меры защиты среды от воздействий энергетических загрязнений.

Промышленные предприятия, объекты энергетики, связи и транспорт являются основными источниками энергетического загрязнения промышленных регионов, городской среды, жилищ и природных зон. К энергетическим загрязнениям относят вибрационное и акустическое воздействия, электромагнитные поля и излучения, воздействия радионуклидов и ионизирующих излучений.

Вибрации в городской среде и жилых зданиях, источником которых является технологическое оборудование ударного действия, рельсовый транспорт, строительные машины и тяжелый автотранспорт, распространяются по грунту. Протяженность зоны воздействия вибраций определяется величиной их затухания в грунте, которая, как правило, составляет 1 дБ/м (в водонасыщенных грунтах оно несколько больше). Чаще всего на расстоянии 50–60 м от магистралей рельсового транспорта вибрации затухают. Зоны действия вибраций около кузнечнопрессовых цехов, оснащенных молотами с облегченными фундаментами, значительно больше и могут иметь радиус до 150–200 м. Значительные вибрации и шум в жилых зданиях могут создавать расположенные в них технические устройства (насосы, лифты, трансформаторы и т. п.).
Шум в городской среде и жилых зданиях создается транспортными средствами, промышленным оборудованием, санитарно-техническими установками и устройствами и др. На городских магистралях и в прилегающих к ним зонах уровни звука могут достигать 70–80 дБ А, а в отдельных случаях 90 дБ А и более. В районе аэропортов уровни звука еще выше.
Источники инфразвука могут быть как естественного происхождения (обдувание ветром строительных сооружений и водной поверхности), так и антропогенного (подвижные механизмы с большими поверхностями – виброплощадки, виброгрохоты; ракетные двигатели, ДВС большой мощности, газовые турбины, транспортные средства). В отдельных случаях уровни звукового давления инфразвука могут достигать нормативных значений, равных 90 дБ, и даже превышать их, на значительных расстояниях от источника.
Основными источниками электромагнитных полей (ЭМП) радиочастот являются радиотехнические объекты (РТО), телевизионные и радиолокационные станции (РЛС), термические цехи и участки (в зонах, примыкающих к предприятиям). Воздействие ЭМП промышленной частоты чаще всего связано с высоковольтными линиями (ВЛ) электропередач, источниками постоянных магнитных полей, применяемыми на промышленных предприятиях. Зоны с повышенными уровнями ЭМП, источниками которых могут быть РТО и РЛС, имеют размеры до 100...150 м. При этом даже внутри здании, расположенных в этих зонах, плотность потока энергии, как правило, превышает допустимые значения.
ЭМП промышленной частоты в основном поглощаются почвой, поэтому на небольшом рас-стоянии (50...100 м) от линий электропередач электрическая напряженность поля падает с десятков тысяч вольт на метр до нормативных уровней. Значительную опасность представляют магнитные поля, возникающие в зонах около ЛЭП токов промышленной частоты, и в зонах, прилегающих к электрифицированным железным дорогам. Магнитные поля высокой интенсивности обнаруживаются и в зданиях, расположенных в непосредственной близости от этих зон.
В быту источниками ЭМП и излучений являются телевизоры, дисплеи, печи СВЧ и другие устройства. Электростатические поля в условиях пониженной влажности (менее 70 %) создают па-ласы, накидки, занавески и т. д.
Микроволновые печи в промышленном исполнении не представляют опасности, однако не-исправность их защитных экранов может существенно повысить утечки электромагнитного излучения. Экраны телевизоров и дисплеев как источники электромагнитного излучения в быту не представляют большой опасности даже при длительном воздействии на человека, если расстояния от экрана превышают 30 см. Однако служащие отделов ЭВМ жалуются на недомогания при регулярной длительной работе в непосредственной близости от дисплеев.
Воздействие ионизирующего излучения на человека может происходить в результате внешнего и внутреннего облучения. Внешнее облучение вызывают источники рентгеновского и γ-излучения, потоки протонов и нейтронов. Внутреннее облучение вызывают α и β-частицы, которые попадают в организм человека через органы дыхания и пищеварительный тракт.
Для человека, проживающего в промышленно развитых регионах РФ, годовая суммарная эквивалентная доза облучения из-за высокой частоты рентгенодиагностических обследований достигает 3000 ..3500 мкЗ в/год (средняя на Земле доза облучения равна 2400 мкЗв/год). Для сравнения предельно допустимая доза для профессионалов (категория А) составляет 50·103 мкЗв/год.
Доза облучения, создаваемая антропогенными источниками (за исключением облучений при медицинских обследованиях), невелика по сравнению с естественным фоном ионизирующего облучения, что достигается применением средств коллективной защиты. В тех случаях, когда на объектах экономики нормативные требования и правила радиационной безопасности не соблюдаются, уровни ионизирующего воздействия резко возрастают.
Рассеивание в атмосфере радионуклидов, содержащихся в выбросах, приводит к формированию зон загрязнения около источника выбросов. Обычно зоны антропогенного облучения жите-лей, проживающих вокруг предприятий по переработке ядерного топлива на расстоянии до 200 км, колеблются от 0,1 до 65 % естественного фона излучения.
Миграция радионуклидов в водоемах и грунте значительно сложнее, чем в атмосфере Это обусловлено не только параметрами процесса рассеивания, но и склонностью радионуклидов к концентрации в водных организмах, к накоплению в почве. 
Эти данные свидетельствуют о том, что вода, составляющая 85 % массы Земли, содержит лишь 27 % радиоизотопов, а биомасса, составляющая 0,1 %, накапливает до 28 % радиоизотопов.
Миграция радиоактивных веществ в почве определяется в основном ее гидрологическим режимом, химическим составом почвы и радионуклидов. Меньшей сорбционной емкостью обладают песчаная почва, большей–глинистая, суглинки и черноземы. Высокой прочностью удержания в почве обладают 90Sr и 137Cs. 
Эти загрязнения, обусловленные глобальными поступлениями радиоактивных веществ в почву, не превышают допустимые уровни. Опасность возникает лишь в случаях произрастания культур в зонах с повышенными радиоактивными загрязнениями.
Опыт ликвидации последствий аварии на Чернобыльской АЭС показывает, что ведение сельскохозяйственного производства недопустимо на территориях при плотности загрязнения выше 80 Ки/км2, а на территориях, загрязненных до 40...50 Ки/км2, необходимо ограничивать производство семенных и технических культур, а также кормов для молодняка и откормочного мясного скота. При плотности загрязнения 15...20 Ки/км по 137Cs сельскохозяйственное производство вполне допустимо.
Уровень радиоактивности в жилом помещении зависит от строительных материалов: в кирпичном, железобетонном, шлакоблочном доме он всегда в несколько раз выше, чем в деревянном. Газовая плита привносит в дом не только токсичные газы NO, CO и другие, включая канцерогены, но и радиоактивные газы. Поэтому уровень радиоактивности на кухне может существенно превосходить фоновый при работающей газовой плите.
В закрытом, непроветриваемом помещении человек может подвергаться воздействию радо-на-222 и радона-220, которые непрерывно высвобождаются из земной коры. Поступая через фундамент, пол, из воды или иным путем, радон накапливается в изолированном помещении. Средние концентрации радона обычно составляют (кБк/м3): в ванной комнате 8,5, на кухне 3, в спальне 0,2. Концентрация радона на верхних этажах зданий обычно ниже, чем на первом этаже. Избавиться от избытка радона можно проветриванием помещения.
В этом отношении поучителен опыт Швеции: с начала 50-х годов в стране проводится кампания по экономии энергии, в том числе путем уменьшения проветривания помещений. В результате средняя концентрация радона в помещениях возросла с 43 до 133 Бк/м3 при снижении воздухообмена с 0,8 до 0,3 м3/ч. По оценкам, на каждый 1 ГВт/год электроэнергии, сэкономленной за счет уменьшения проветривания помещений, шведы получили дополнительную коллективную дозу облучения в 5600 чел.·Зв.
Из рассмотренных энергетических загрязнений в современных условиях наибольшее негативное воздействие на человека оказывают радиоактивное и акустическое загрязнения.
2. Задачи контрольной работы.

Задача 1.

Задание. Определить годовое количество и вес люминесцентных ртутьсодержащих ламп, подлежащих замене и утилизации в офисных помещениях или уличном освещении, для условий, представленных в табл.1 .

Разработать мероприятия по складированию и утилизации отработанных люминесцентных ламп.

Исходные данные для расчета

Таблица 1



Номер

задания




Назначение освещения



Тип ламп

Количество используемых ламп

Срок службы лампы

Число

часов работы

лампы в году

Вес одной лампы

N

q

T

т

Шт

час

Час

кг

9

Уличное освещение


ЛБ-20



20


15000


3000


0,17


Решение:

1.Годовое количество люминесцентных ртутьсодержащих ламп (N), подлежащих замене и утилизации в офисных помещениях или уличном освещении, находится из выражения
, шт./год

где n - количество ламп, используемых в офисных помещениях, шт;

q - срок службы лампы, час;

t - число часов работы лампы в году, час.

(шт./год)

Общий вес ламп (М), подлежащих замене и утилизации, подсчитывается так

, кг

m - вес одной лампы, кг

(кг.)

Мероприятия по складированию и утилизации отработанных люминесцентных ламп:

Ртуть и ее соединения относятся к веществам I класса опасности, согласно ГОСТ -12.1.005-88. В каждой газоразрядной лампе, по условиям её работы, находится дозированная капелька химически чистой ртути, весом 0,06 до 0,15 грамм в зависимости от мощности лампы.

Пары металлической ртути и соли ртути могут привести к тяжелому отравлению организма, поэтому отходы ртутьсодержащих ламп, так же, относятся к первому классу опасности, что предполагает особый контроль за их транспортировкой, хранением и утилизацией.

Хранение ртутьсодержащих ламп должно быть сосредоточено в специальных складах, закрепленных за ответственным лицом и обеспечивающих их полную сохранность.

Перед приемом на склад ртутьсодержащих ламп требуется:

- проверить правильность и целостность упаковки

- при разгрузке следить за соблюдением мер предосторожности от возможных ударов и бросков.

Учёт ртутьсодержащих ламп должен осуществляться с отметкой в журнале, при сдаче на утилизацию указывать количество ламп и организацию, куда сдаются лампы.

Количество, поступающих в организацию ламп определяется с учётом среднегодового расхода ламп. Приём поступающих ламп осуществляется персоналом выполняющим ремонт и тех. обслуживание освещения. Количество поступивших ламп по типам фиксируется в «Журнале приема новых люминесцентных и ртутных ламп». Количество выданных ламп и приёма отработанных фиксируется в «Журнале учета выдачи новых и приема отработанных ртутных и люминесцентных ламп. Ответственным за ведение журналов является мастер участка, выполняющей ремонт и тех. обслуживание сетей освещения.

Вновь поступившие лампы хранятся в заводской упаковке в соответствии с рекомендациями завода - изготовителя, не более 60 штук в одной коробке. Лампы хранятся в установленном месте. Ключ от помещения находится у ответственного лица.

Отработанные лампы упаковываются в заводскую упаковку и временно накапливаются в отдельном специально оборудованном помещении. Планировка, устройство, оборудование, отопление, вентиляция, водоснабжение и канализация должна соответствовать требованиям, изложенным в санитарных правилах «Порядок сбор, учета и контроля отработанных ртутьсодержащих ламп» ГОСТ 6825-91 «Лампы люминесцентные трубчатые для общего освещения». Помещения должны иметь планировку, позволяющую организовать эффективное проветривание, уборку помещений. Поверхность стен и потолка склада должны быть ровными и гладкими. В помещениях с выделением в воздух ртути запрещается применение алюминия в качестве конструктивного материала.

Допустимое количество накопленных отработанных ртутьсодержащих ламп определяется ПНООЛР («проектом нормативов образования отходов и лимитов на их размещение») и размерами товарной партии для вывоза. Нахождение газоразрядных ламп в неупакованном виде или в не установленных местах запрещается.

При накоплении товарной партии и передаче на утилизацию составляется акт приема- передачи с указанием типа и количества отработанных ламп. Информация о количестве накопленных отработанных ламп по типам поквартально передается инженеру по ООС.

Контроль над правильностью учета и хранения ламп раз в квартал осуществляется записью в «Журнале выдачи новых и приема отработанных ламп».

Задача 2.

Задание. Определить годовое количество загрязняющих веществ, выбрасываемых в атмосферу, при движении автомобилей по дорогам. В качестве загрязняющих веществ принять угарный газ (СО), углеводороды (несгоревшее топливо СН), окислы азота (NOх ), сажу (С) и сернистый газ (SO2).


Исходные данные для расчета



Номер задания




Марка автомобиля


Тип двигателя внутреннего сгорания (ДВС)

Число дней работы в году

Суточный пробег автомобиля

Холодный

период ( Х)

Теплый период (Т)





L

дн

дн

км

9

Газель Газ3221

Д

250

120

150

Решение:

Годовое количество загрязняющих веществ при движении автомобилей по дорогам рассчитывается отдельно для каждого наименования (СО, СН, NOх, С и SO2) по формуле



где – пробеговые выбросы загрязняющих веществ при движении автомобилей в теплый и холодный периоды года, г/км. Значения принимаются в соответствии с данными табл.;

L – суточный пробег автомобиля, км;

– количество рабочих дней в году в теплый и холодный периоды года соответственно, дн.


Пробеговые выбросы загрязняющих веществ грузовыми

автомобилями отечественного производства

Тип автомобиля

Тип ДВС

Удельные выбросы загрязняющих веществ , г/км

СО

СН

NOх

C

SO2

Т

Х

Т

Х

Т

Х

Т

Х

Т

Х

Зил 130

Д

2,3

2,8

0,6

0,7

2,2

2,2

0,15

0,20

0,33

0,19


Примечание: Т, Х- теплый и холодный периоды года соответственно.

Б, Д – бензиновый и дизельный двигатели соответственно
т./год

т./год

т./год

т./год

т./год
Задача 3.

Задание. Определить годовое количество пыли, выбрасываемой в атмосферу при погрузке горной породы в автосамосвал БеЛАЗ 548.

Исходные данные для расчета


Номер задания


Влажность горной массы

Скорость ветра в районе работ

Высота разгрузки горной массы

Часовая производительность

Время смены

Число смен в сутки

Количество рабочих дней в году

?

V

Н

Q







%

м/с

М

т/ч

час

шт.

дн.

9

6,8

4,3

1

1200

8

3

230

Решение:

Годовое количество пыли, выделяющейся при работе экскаваторов, рассчитывается по формуле :

, т/год

где – коэффициент, учитывающий влажность перегружаемой горной породы (принимается по табл.1);

– коэффициент, учитывающий скорость ветра в районе ведения экскаваторных работ (принимается по табл.2);

– коэффициент, зависящий от высоты падения горной породы при разгрузке ковша экскаватора в автомобиль (принимается по табл.3);

Д – удельное выделение пыли с тонны перегружаемой горной породы, принимается равной 3,5 г/т;

Q – часовая производительность экскаватора, т/час;

- время смены, час;

N- количество смен в сутки, шт.;

- количество рабочих дней в году, дн.

табл.1 Зависимость величины коэффициента К1 от влажности горной породы

Влажность породы (?), %

Значение коэффициента К1

3,0 – 5,0

1,2

5,0 – 7,0

1,0

7,0 – 8,0

0,7

табл.2 Зависимость величины коэффициента К2 от скорости ветра

Скорость ветра (V), м/с

Значение коэффициента К2

до 2

1,0

2-5

1,2

5-7

1,4

7-10

1,7

табл.3 Зависимость величины коэффициента К3 от высоты разгрузки горной породы

Высота разгрузки горной

породы (Н), м

Значение коэффициента К3

1,5

0,6

2,0

0,7

4,0

1,0

6,0

1,5


т/год

Ответ: Годовое количество пыли, выделяющейся при работе экскаваторов равно т/год.
Задача 4.

Задание. Промышленное предприятие выбрасывает в атмосферу несколько загрязняющих веществ с концентрациями в приземном слое

Требуется:

  1. Определить соответствие качества атмосферного воздуха требуемым нормативам ;

  2. Оценить степень опасности загрязнения воздуха, если оно есть;

  3. При высокой степени опасности определить меры по снижению загрязнения воздуха.



Загрязняющие вещества, i

Концентрация,

9

Аэрозоль серной кислоты

0,11

Диоксид азота

0,3

Диоксид серы

0,3

Серный ангидрит

0,4


Для решения задачи используется индекс суммарного загрязнения воздуха (), который рассчитывается по формуле:



- коэффициент опасности i-го вещества, обратный ПДК этого вещества;

- концентрация i-го вещества в воздухе;

– коэффициент, зависящий от класса опасности загрязняющего вещества: q=1,5; 1,3; 1,0; 0,85 соответственно для 1-го, 2-го, 3-го и 4-го классов опасности.
Значение ПДК

Загрязняющее вещество

Среднесуточная концентрация, мг/

Класс опасности

Аэрозоль серной кислоты

0,1

2

Диоксид азота

0,04

2

Диоксид серы

0,05

2

Серный ангидрит

0,05

2





Условная степень опасности загрязнения воздуха

?1

Воздух чистый

?6

Воздух умеренно загрязнённый

?11

Высокая опасность загрязнения воздуха

11˂?15

Очень опасное загрязнение

˃15

Чрезвычайно опасное загрязнение



˃15 - Чрезвычайно опасное загрязнение
Задача 5.

Задание. Определение степени загрязнения водоносного пласта при разовом воздействии фактора загрязнения.

Условие задачи: при бурении вертикальной скважины с применением промывочной жидкости, содержащей добавку поверхостно-активного вещества – сульфанола, произошёл в пределах водоносного пласта аварийный выброс бурового раствора.

Требуется определить:

  1. Предпологаемую конфигурацию размеры ореолов загрязнения в водоносном горизонте на время t1, t2 и t3 после аварийногосброса;

  2. Степень разбавления загрязняющего потока по состоянию на время t1, t2 и t3;

  3. Интервал времени, после которого концентрация сульфанола в водоносном пласте достигнет ПДК, т.е. санитарной нормы.

Параметры водоносного пласта

Ед. изм.

№9

Мощность пласта, Н

М

3

Эффективная пористость, Пэф

%

3.3

Скорость потока, V

см/сек

2.5

Скорость диффузии, V0

см/сек

0,1

Объём аварийного выброса Q

м3

2

Концентрация загрязняющего вещества, С

%

1.5

Интервалы времени,

t1

t2

t3

Час / сек.

1 / 3600

4 / 14400

8 / 28800

Условные ПДК

мг/л

0,08


Определяется концентрация и размеры предпологаемых ореолов загрязнения:

М1=(V0+V1)·t1

а1=V·t1

b1=V0· t1

подставляя в те же расчёты t2 и t3, можно получить размеры конфигурации соответствующих ореолов загрязнения.
Расчитываем степень разбавления (N) загрязняющего вещества в ореолах водоносного горизонта на время t1, t2 и t3:
Концентрацию в % переводим в мг/л по формуле:
Смг/л=С%·1,5·104=n·104 мг/л
S=M·b
Для t1, N1=

Для t2, N2=

Для t3, N3=
Определяем концентрацию сульфанола в ореолах в мг/л
С1=
С2=
С3=


М1=(0.001+0,025)· 3600=93.6 М2=(0.001+0,025)·14400=374.4 М3=(0.001+0,025)·28800=748.8
а1=0,025·3600=90 а2=0,025·14400=360 а3=0,025·28800=720

b1=0.001·3600= 3.6 b2=0.001·14400=14.4 b3=0.001·28800=28.8
S1=90·3.6= 324 S2=360·14.4=5184 S3=720·28.8=20736
N1= N2= N3=

Смг/л=1.5·1,5·10000=22500
С1==1320 С2==87 С3==21


- Интервал времени, после которого концентрация сульфанола в водоносном пласте достигнет ПДК.
Список использованной литературы:

1. Киселёв В. Н. Основы экологии: Учеб. пособие. – Минск. 2000.

2. Лапо А.В. Следы былых биосфер. – М., 1987.

4. Передельский Л.В., Коробкин В.И., Приходченко О.Е. Экология: Учебник для ВУЗов ‒ КноРус.2009.




Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации