Алеманов С.Б. Волновая теория строения элементарных частиц - файл n1.doc

Алеманов С.Б. Волновая теория строения элементарных частиц
скачать (2761.8 kb.)
Доступные файлы (1):
n1.doc2762kb.07.11.2012 05:03скачать

n1.doc

1   ...   9   10   11   12   13   14   15   16   17
Элементарные частицы

(Возбужденные состояния полевой среды)
В качестве подсказки, как устроены частицы, природа предоставила такую элементарную частицу как фотон, который представляет электромагнитную волну, где видно, что именно волна является устойчивым возбуждённым состоянием поля - стабильной элементарной частицей. Исходя из аналогии, можно предположить, что и другие элементарные частицы также имеют волновую природу. Согласно современным представлениям, частицы - это возбуждённые состояния поля, но пока нет однозначного ответа, какова полевая структура этих состояний. Фотон - это дискретная электромагнитная волна, окружённая парциальными волнами, т.е. фотон представляет стабильное возбуждённое состояние электромагнитного поля. Это же относится и к замкнутым дискретным волнам, движущимся по синфазным (боровским) орбитам, где, согласно принципу Гюйгенса, в результате интерференции парциальные волны гасят друг друга и излучение не возникает. Такие замкнутые волны также являются стабильными возбуждёнными состояниями поля, но, в отличие от фотонов, они могут покоиться в пространстве, так как волны замкнуты, т.е. они имеют энергию (массу) покоя. Физический вакуум представляет сложную среду, в которой могут распространяться поперечные электромагнитные волны. Продольные же волны могут быть только в замкнутом виде, при этом для них разрешены только определённые размеры орбит, что, видимо, связано со строением вакуума.
«В квантовой теории также есть предел локализации частицы - её комптоновская длина волны lC = ћ / mc, ...»

Физическая энциклопедия. ГРАВИТАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ.
Элементарные частицы, имея полевое происхождение, представляют возбуждённые состояния квантового поля. Например, электрон - это дискретное отрицательное волновое возмущение поля в один квант заряда, движущееся синфазно по орбите в виде продольной замкнутой волны (на орбите укладывается одна длина волны l = h / mc) с радиусом, представляющим предел локализации частицы:
R = ћ / mc = 3.9·10­13 м
(ток всегда замкнут). Магнитный момент замкнутого тока:
M = ecR / 2 =  / 2m
(магнетон Бора). Сила тока, создающего магнитный момент:
I = ec / l = emc2 / h = 19.8 А.
Такое возмущение поля, когда на орбите укладывается одна длина волны (боровская орбита, как в атоме), является устойчивым возбуждённым состоянием поля, так как при синфазном орбитальном движении волна себя не гасит, а возникающие вторичные волны, интерферируя в окружающем полевом пространстве, гасят друг друга, не излучаясь.
«... стационарными являются лишь те орбиты, на которых укладывается целое число волн ...»

Физика. В.Ф.Дмитриева. 2001. С.357.
Распространяющиеся волны обладают энергией, но их энергия (масса) не может покоиться - покоящихся волн не существует, т.е. распространяющиеся волны не обладают энергией (массой) покоя. Если же волна движется по кругу, например, по боровской орбите, то такая энергия (масса) представляет массу покоя, так как замкнутая волна может покоиться - не перемещаться в пространстве.
Движущееся положительное или отрицательное волновое возмущение поля, представляя электрический ток смещения, может двигаться только по замкнутой боровской орбите - ток, согласно законам электродинамики, всегда замкнут. При этом орбитальное движение совершает только энергия (масса) электрического потока, магнитный же поток создаётся круговым током смещения и не движется, поэтому масса магнитного потока не участвует в образовании момента количества движения - спина, т.е. возникает "удвоенный магнетизм" спина. В электромагнитной волне энергия (масса) электрического потока равна энергии (массе) магнитного потока. Отсюда спин электрона:
J = mcR / 2 = ћ / 2,
где m - масса электрона, с - скорость кругового тока (скорость света), R - эффективный радиус орбиты, по которому движется электрическое возмущение поля R = ћ / mc.
«"Удвоенный магнетизм" спина подтверждается, в частности, опытом Эйнштейна и де Хааза и опытом Барнетта.»

Курс физики. И.В.Савельев. 1989. Т.3. С.107.
Надо заметить, что классический радиус электрона не имеет ничего общего с реальным размером электрона, так как при расчёте как бы забывают, что электрон, кроме электрического потока, обладает магнитным потоком, т.е. обладает электромагнитной энергией и рассчитывать электрон надо как электромагнитное возмущение поля.
В поле могут возникать как частицы, так и античастицы, например, гамма­фотон, состоящий из двух разноимённых областей возмущения, может при столкновении распадаться на положительное и отрицательное возмущение, т.е. на позитрон и электрон.
«Рождение электрон-позитронных пар происходит, в частности, при прохождении гамма­фотонов через вещество.»

Курс физики. И.В.Савельев. 1989. Т.3. С.277.
Частица - это возбуждённое состояние квантового поля и, если в этом возбуждённом состоянии количество квантов больше или меньше, чем их в вакууме (невозбуждённом состоянии квантового поля), то такое возбуждённое состояние поля представляет элементарную частицу, обладающую зарядом. Понятно, что если возникает область с избытком в один квант, то, соответственно, образуется область с недостатком в один квант, т.е. возникают две разноимённые области и тем самым выполняется закон сохранения заряда. Области с избытком или недостатком квантов представляют возбуждённые состояния поля и наблюдаются как элементарные частицы.
Элементарные частицы обладают физическими свойствами, по которым можно судить об их строении. Например, все свойства электронов имеют электромагнитную природу, поэтому электрон, так же как и фотон, - это чисто электромагнитная частица - возбуждённое состояние квантового электромагнитного поля.
«... замкнутые токи и связанные с ними магнитные моменты.»

Физическая энциклопедия. МАГНЕТИЗМ МИКРОЧАСТИЦ.
Устойчивые замкнутые токи можно экспериментально наблюдать, например, в сверхпроводниках, где токи проводимости текут без выделения теплоты, так же как и токи смещения. В том, что могут существовать замкнутые электрические токи проводимости или смещения, с точки зрения электродинамики ничего необычного нет, так как электродинамика утверждает, что ток всегда замкнут. При это магнитные потоки дискретны, так как электромагнитное поле имеет квантовую природу.
«... в виде одиночных вихрей, содержащих в себе по одному кванту магнитного потока. ... По периферии вихря текут сверхпроводящие токи, ...»

Физическая энциклопедия. СВЕРХПРОВОДИМОСТЬ.
Электромагнитные вихри представляют устойчивые образования, т.е. их можно рассматривать как возбуждённые состояния сверхпроводящей среды. Магнитная энергия вихрей Wм = IсвФ0 / 2 , где Iсв - круговой сверхпроводящий ток, Ф0 - квант магнитного потока.
«Например, если полю, находящемуся в вакуумном состоянии, сообщить достаточную энергию, то произойдёт его возбуждение - рождение частицы, ...»

Энциклопедия элементарной физики. ВАКУУМ.
Таким образом, чтобы представить, как устроены элементарные частицы, надо рассмотреть полевые структуры различных устойчивых возбуждённых состояний квантового поля. Хочу заметить, что первая из элементарных частиц, для которой стало известно её строение, - это частица фотон, состоящая из двух квантов - кванта электрического потока (1.602·10­19 Кл) и кванта магнитного потока (2.068·10­15 Вб). Остальные элементарные частицы также состоят из различных комбинаций этих двух квантов - кванта электрического потока и кванта магнитного потока. Поэтому в свойствах элементарных частиц можно встретить постоянную Планка, которая представляет произведение этих двух квантов h = 2eФ0. Эти фундаментальные кванты являются кирпичиками всей материи. Из них образованы всевозможные комбинации дискретных электромагнитных волн, представляющие элементарные частицы. На первый взгляд кажется, что волны - это неустойчивые образования, но факты говорят об обратном, например, фотон - это электромагнитная волна, которая абсолютно устойчива и представляет стабильную элементарную частицу.
«Оказалось, что всем частицам вещества, например электронам, присущи не только корпускулярные, но и волновые свойства, и была установлена возможность взаимопревращения элементарных частиц.»

Физическая энциклопедия. ФОТОН.
Одни волновые формы возбуждённого состояния поля могут переходить в другие волновые формы - взаимопревращение элементарных частиц. Физические свойства элементарной частицы определяются волновой формой (структурой) возбуждённого состояния поля, например, электрон - отрицательное волновое возмущение поля, позитрон - положительное волновое возмущение поля, фотон - нейтральное поперечное волновое возмущение поля, состоящее из двух разноимённых областей возмущения, и так далее. По мере усложнения волновой формы (структуры) возбуждённого состояния поля увеличивается число физических свойств, присущих частице.
«В таком подходе частицы выступают как возбуждённые состояния системы (поля).»

Физическая энциклопедия. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ.
Элементарные частицы (возбуждённые состояния поля) при движении возмущают поле. Например, если на пути частицы находятся щели, то частица проходит только через одну из них, тогда как связанное с ней возмущение поля, распространяясь в виде присоединённой волны, проходит через несколько щелей, образуя интерференционную картину поля, индукционно влияющую на движение частицы (на движение частиц могут влиять только поля). Т.е. другие щели, через которые проходят волновые возмущения, также участвуют в прохождении частиц. Волны де Бройля - это возмущения, отражающие полевую структуру движущихся частиц, которые могут влиять на движение частиц, например, при огибании волнами препятствий.
Любое движение в полевой среде создает возмущение и поэтому сопровождается присоединёнными волнами. Если движение не превышает скорость распространения волн, то парциальные волны, возникающие при движении возмущения, не создают излучения, а, согласно принципу Гюйгенса, движутся с частицей как единое целое в виде присоединённой волны де Бройля, так как общая огибающая возникает, только если движение превышает скорость распространения волн.
«По принципу Гюйгенса в результате интерференции парциальные волны гасят друг друга всюду, за исключением их общей огибающей, которой соответствует волновая поверхность света, распространяющегося в среде.»

Физическая энциклопедия. ЧЕРЕНКОВА - ВАВИЛОВА ИЗЛУЧЕНИЕ.

«При движении в однородной среде со скоростью V < vф эти возмущения переносятся с телом как единое целое.»

Физическая энциклопедия. ВОЛНЫ.

«Волны де Бройля - волны, связанные с любой движущейся микрочастицей, ...»

Физическая энциклопедия. ВОЛНЫ ДЕ БРОЙЛЯ.
Волны де Бройля - волны, связанные с любой движущейся микрочастицей, независимо от того, имеет частица массу покоя или нет, т.е. с фотонами также связаны волны де Бройля электромагнитной природы.
«Большая часть нейтронно-оптических явлений имеет аналогию с оптическими явлениями, несмотря на различную природу полей нейтронного и светового излучений.»

Физическая энциклопедия. НЕЙТРОННАЯ ОПТИКА.

«... дифракция микрочастиц ничем не отличается от закономерностей дифракции рентгеновских лучей и дифракции волн других диапазонов. ... удалось наблюдать и дифракцию атомов и молекул.»

Физический энциклопедический словарь. ДИФРАКЦИЯ МИКРОЧАСТИЦ.

«Явление же дифракции доказывает, что в прохождении каждого электрона участвуют оба отверстия - и первое и второе.»

Курс физики. И.В.Савельев. 1989. Т.3. С.55.

«Заряженная частица вызывает кратковременную поляризацию вещества в окрестностях тех точек, через которые она проходит при своем движении. Поэтому молекулы среды, лежащие на пути частицы, становятся кратковременно действующими когерентными источниками элементарных электромагнитных волн, интерферирующих при наложении. Если V < v = c / n, то элементарные волны гасят друг друга. ... Для каждого значения l длины волны излучения можно найти такое значение l = lal , при котором D = l / 2, так что элементарные волны гасят друг друга ... при равномерном прямолинейном движении заряженной частицы в веществе с "досветовой" скоростью частица не излучает.»

Справочник по физике. Б.М.Яворский, А.А.Детлаф. 1996. С.400.
Также электрический диполь не излучает при равномерном движении, вызывая по ходу движения поляризацию в виде возмущения, которое отражает его полевую структуру. Т.е. движение электрического диполя также сопровождается присоединённой волной.
Равномерное движение заряженных частиц в вакууме вызывает кратковременное электрическое возмущение (смещение) поля в виде токов смещения в окрестностях тех точек, через которые они проходят (поляризация диэлектрического вакуума), т.е. движение сопровождается возникновением электромагнитных волн, которые, интерферируя в окружающем полевом пространстве, гасят друг друга, не излучаясь. Получается, что движение в вакууме (полевом пространстве) связано с волнами, которые не излучаются при равномерном движении. Нейтральные частицы состоят из возмущений поля и также вызывают в окрестностях тех точек поля, через которые они проходят, возникновение волн, которые не излучаются и отражают полевую структуру движущихся частиц. Аналогичные интерференционно-волновые процессы протекают при движении волновых возмущений по орбитам, на которых укладываются целые длины волн (боровские орбиты), т.е. возникающие вторичные волны, интерферируя, гасят друг друга, не излучаясь, на самих же орбитах при синфазном движении волны себя не гасят. Таким образом, волновые образования, от которых вторичные волны, интерферируя в окружающем пространстве, гасят друг друга, не излучаясь, представляют устойчивые возбуждённые состояния поля - элементарные частицы, составляющие вещество. Получается, существование элементарных частиц связано с интерференцией волн, поэтому можно считать, что вещество представляет интерференционно-волновую картину квантового поля.
Частицы при движении обладают кинетической энергией, а так как кинетическая энергия имеет массу и связана с движущимися частицами, то можно считать, что увеличивается общая масса частиц. Кинетическая энергия не имеет массы покоя, так как покоящейся кинетической энергии не бывает. Масса, которая не может покоиться, является релятивистской (кинетической) массой. Фотоны, не имея массы покоя, представляют кинетическую энергию в чистом виде, т.е. плотность кинетической энергии в электромагнитной волне можно рассчитать на основе электродинамики как плотность электромагнитной энергии.
«Таким образом, приращение кинетической энергии частицы пропорционально приращению её релятивистской массы.»

Механика. И.Е.Иродов. 2000. С.276.

«... называют массой движения, или релятивистской массой.»

Математическая физика. Энциклопедия. РЕЛЯТИВИСТСКАЯ МЕХАНИКА.
С массой покоя связана потенциальная энергия. Кинетическая же энергия частицы представляет релятивистскую массу (массу, сопровождающую движение), т.е. это масса (энергия) вихревых потоков поля, которые сопровождают движущуюся частицу в виде присоединённой волны.
«Принято считать, что масса элементарной частицы определяется полями, которые с ней связаны.»

Физический энциклопедический словарь. МАССА.
При торможении частицы теряют кинетическую энергию (присоединённую волну), например, в виде испускания электромагнитных волн - фотонов, которые уносят массу кинетической энергии. Фотоны не имеют массы покоя - потенциальной энергии, они обладают только кинетической энергией - релятивистской массой. Дополнительной релятивистской массой также обладают движущиеся частицы, имеющие массу покоя, так как при их движении в окружающем полевом пространстве возникают возмущения в виде волн де Бройля (волны всегда обладают энергией), в которых находится кинетическая энергия - релятивистская масса. Природа волн де Бройля электромагнитная (полевая), это видно, например, из формулы длины волны де Бройля l = 2eФ0 / p , где e - квант электрического заряда (потока), Ф0 - квант магнитного потока, p - импульс. Коэффициент пропорциональности h = 2eФ0 (постоянная Планка) упрощает выражение: l = h / p - это формула длины волны электромагнитного кванта, волны де Бройля (электромагнитный квант - порция электромагнитной энергии). Все силы взаимодействия в природе имеют полевое происхождение, поэтому, когда частица под действием силы увеличивает скорость движения, она забирает с собой часть энергии (массы) поля (возмущения) в виде волны де Бройля. Т.е. как бы движутся вместе две частицы: сама частица (имеющая массу покоя) и присоединённая волна де Бройля - электромагнитный квант (не имеющий массы покоя), который может начать распространяться самостоятельно при торможении частицы.
«Поскольку энергия фотона равна разности начальной и конечной энергий электрона, спектр тормозного излучения имеет резкую границу при энергии фотона, равной начальной кинетической энергии электрона.»

Физическая энциклопедия. ТОРМОЗНОЕ ИЗЛУЧЕНИЕ.
Ориентация спина фотона

(Ориентация спина дискретной поперечной волны)
Теоретически считается, что спин фотона имеет только продольную ориентацию, но такая точка зрения не имеет однозначного экспериментального подтверждения. С другой стороны, аннигиляцию электрона и позитрона с образованием трех фотонов можно объяснить, если спины разлетающихся фотонов ориентированы поперечно движению, только тогда не нарушается закон сохранения кинетического момента системы, например, сохраняется векторная сумма моментов до аннигиляции и после.




электрон + позитрон --> три фотона




«... ортопозитроний аннигилирует в три гамма-кванта ...»

Физическая энциклопедия. ПОЗИТРОНИЙ.
Если спины всех фотонов ориентированы по направлению движения (или против), сумма равна 0. Если спины двух фотонов - по направлению движения и один - против (или, соответственно, наоборот), сумма равна 2. Согласно закону сохранения момента количества движения системы, после реакции должен сохраняться суммарный спин, равный 1, а такое возможно только в том случае, когда спины разлетающихся фотонов ориентированы поперечно движению (перпендикулярно плоскости разлёта), например, у двух фотонов - в одну сторону и у одного - в противоположную.
«Важнейшими законами сохранения, справедливыми для любых изолированных систем, являются законы сохранения энергии, импульса, момента количества движения, электрического заряда.»

Физический энциклопедический словарь. СОХРАНЕНИЯ ЗАКОНЫ.

«Спин J связан со строгими законами сохранения момента количества движения и поэтому является точным квантовым числом.»

Физическая энциклопедия. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

«Спин J - собственный момент импульса частицы, измеряется в единицах ћ и принимает целые и полуцелые значения.»

Справочник по физике. Б.М.Яворский, А.А.Детлаф. 1996. С.540.
Так как распространяющиеся поперечные возмущения поля могут иметь разные типы поляризации, можно предположить, что линейно поляризованные фотоны имеют поперечную ориентацию спина, а циркулярно поляризованные - продольную. Аналогия: линейно поляризованные возмущения, распространяющиеся по натянутому шнуру, имеют поперечную ориентацию момента количества движения, а циркулярно поляризованные - продольную. Все поперечные возмущения переносят момент количества движения, ориентация которого зависит от типа поляризации.
«Тем самым свойство правой или левой циркулярной поляризации присуще отдельному фотону. ... Тем самым свойство линейной поляризации вдоль осей Y или Z также присуще отдельному фотону.»

Фундаментальный курс физики. А.Д.Суханов. 1999. Т.3. С.16.

«... различают следующие типы поляризации поперечных синусоидальных волн: эллиптическую, циркулярную (или круговую), линейную (или плоскую).»

Курс физики. А.А.Детлаф, Б.М.Яворский. 2000. С.388.

«... перенося энергию и импульс, момент импульса; ...»

Физическая энциклопедия. ВОЛНЫ.
Рассмотрим другой пример, когда аннигилируют электрон и позитрон с образованием двух фотонов.
«... парапозитроний аннигилирует в два гамма-кванта ...»

Физическая энциклопедия. ПОЗИТРОНИЙ.
Если после аннигиляции спины фотонов ориентированы по направлению движения или против, то в этом случае нарушается закон сохранения момента количества движения, так как система из электрона и позитрона имела нулевой момент количества движения, а после аннигиляции система из двух фотонов имеет момент количества движения, не равный нулю во всех случаях, кроме одного, когда пара электрон и позитрон до аннигиляции покоилась относительно наблюдателя. Для наглядности рассмотрим крайний случай, когда пара электрон и позитрон движется со скоростью, близкой к скорости света. После аннигиляции два фотона, согласно закону сохранения импульса, будут двигаться в том же направлении, в котором двигались электрон и позитрон и, если спины фотонов ориентированы по направлению движения или против, то в сумме момент количества движения будет не равен нулю.
-->

электрон + позитрон --> два фотона наблюдатель

-->
Также можно рассмотреть обратный случай, когда наблюдатель движется относительно электрона и позитрона. Если после аннигиляции спины фотонов ориентированы по направлению движения или против, то для движущегося наблюдателя система из двух фотонов будет иметь ненулевой момент количества движения, что противоречит закону сохранения момента количества движения. Т.е., например, система из наблюдателя, электрона и позитрона не имеет момента количества движения, а после аннигиляции система из наблюдателя и двух фотонов будет его иметь и, если наблюдатель столкнется с фотонами, поглотив их, то у него появится момент количества движения. Отсюда можно сделать вывод: постулат о том, что спины фотонов всегда имеют продольную ориентацию, является неверным.
Электромагнитная индукция

(Электродинамическое взаимодействие,

образованное токами электрического смещения поля)
«Если какой-нибудь заряд переместился из одной точки в другую, то, очевидно, силы, действующие со стороны этого заряда на другие заряды, изменятся. При непрерывном движении заряда эти силы также должны меняться непрерывно; однако, если распространение действия заряда совершается с конечной скоростью, это изменение будет отставать от перемещения заряда, что приводит к значительным усложнениям теории действия электрических сил. Чтобы учесть специфические эффекты, возникающие при наличии движущихся зарядов, вводится дополнительная характеристика, которую мы и назвали индукцией магнитного поля. Введение этой характеристики позволяет существенно упростить всю теорию электрических явлений и не задумываться о том, что электрическое воздействие распространяется в пространстве с конечной скоростью. Так как приходится пользоваться двумя понятиями: напряжённостью электрического поля и индукцией магнитного поля, - то явления, которые мы будем в дальнейшем изучать, получили общее название электромагнитные явления. Таким образом, известные ещё из школьного курса магнитные силы представляют не что иное, как проявление электрических действий, вызванных движущимися зарядами. В природе не существует никаких особых магнитных зарядов, а есть только электрические заряды двух типов, условно называемые положительными и отрицательными. В заключение заметим, что в выражении для силы Лоренца не случайно стоит коэффициент с. Его значение соответствует скорости света в вакууме, а это как раз та самая максимальная скорость, с которой может распространяться электрическое поле заряда, возникшего в данной точке пространства.»

Основы физики. Л.А.Грибов, Н.И.Прокофьев. 1995. С.250. (§7.1)
Т.е. в выражении для силы Лоренца (система СГС) коэффициент с - это скорость распространения изменений (смещений) электрического поля, которые в виде токов смещения сопровождают движение зарядов. Из выражения видно, что если бы изменения поля распространялись мгновенно, то никакой силы Лоренца (релятивистского эффекта) не возникало бы.
«... возникновение магнитного поля является чисто релятивистским эффектом, следствием наличия в природе предельной скорости c, равной скорости света в вакууме. Если бы эта скорость была бесконечной (соответственно и скорость распространения взаимодействий), никакого магнетизма вообще не существовало бы.»

Электромагнетизм. И.Е.Иродов. 2000. С.225.
Магнитное поле можно рассматривать как релятивистский эффект (эффект движения), связанный с запаздыванием распространения электрического смещения поля, т.е. магнитные поля представляют распространяющиеся электрические смещения поля. Согласно формуле преобразования полей
1   ...   9   10   11   12   13   14   15   16   17


Учебный материал
© bib.convdocs.org
При копировании укажите ссылку.
обратиться к администрации